Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Ploskikh A. J., Ryskin N. M. Simulation of a Sub-THz Traveling Wave Tube with Multiple Sheet Electron Beam. Izvestiya of Sarat. Univ. Physics. , 2019, vol. 19, iss. 2, pp. 113-121. DOI: 10.18500/1817-3020-2019-19-2-113-121

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 58)
Language: 
Russian
UDC: 
621.385.6

Simulation of a Sub-THz Traveling Wave Tube with Multiple Sheet Electron Beam

Autors: 
Ploskikh Andrey Jeduardovich, Saratov State University
Ryskin Nikita Mikhailovich, Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
Abstract: 

Background and Objectives: Many applications, such as highdata-rate wireless communications, spectroscopy, high-resolution radar, biomedical imaging, security, etc. require compact highpower sources of sub-THz radiation. Traveling wave tube (TWT) amplifiers are the most promising candidates for such sources combining 10–100 W power and wide b andwidth. Here we present the results of design and simulation of a 0.2 THz TWT with a grating slow-wave structure (SWS) and electron-optical system (EOS) with three elliptic-sha ped beams. Materials and Methods: We have conducted numerical simulation of a 0.22 THz TWT amplifier with three elliptic-shaped electron beams and dual-grating staggered SWS. For SWS design and simulation of cold electromagnetic parameters, a fast and accurate code based on the integral equation method was used. For calculation of small-signal and large-signal g ain regimes, the well-known 1D nonlinear frequency-domain TWT theory was used. Results: Dispersion characteristics of different transverse modes in the dual-grating SWS are calculated. The electron beam with 21.4 kV dc beam voltage is synchronous with the third-order transverse mode in a wide range of frequencies around 0.22 THz. Small-signal gain for 100 mA total beam current (i.e. 33.3 mA current of each beamlet) is calculated. For 21.4 kV beam voltage, the gain is aro und 15 dB in 200–250 GHz frequency band. Large signal gain calculations show that over 50 W output power may be attained. Conclusions: In this paper, the possibility of developing a 0.22 THz TWT amplifier with a dual-grating staggered SWS and electron beam consisting of th ree elliptic beamlets is considered. Such a design with increased cross section allows to decrease the current density, which opens up the possibility of a continuous-wave operation. In addition, it facilitates the beam focusing by the magnetic field.

Reference: 

1. Srivastava V. THz vacuum microelectronic devices. J. Physics: Conf. Series, 2008, vol. 114, no. 1, 012015.

2. Booske J. H., Dobbs R. J., Joye C. D., Kory C. L., Neil G. R., Park G. S., Park J. H., Temkin R. J. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol., 2011, vol. 1, no. 1, pp. 54–75.

3. Dhillon S. S., Vitiello M. S., Linfi eld E. H., Davies A. G., Hoffmann M. C., Booske J., Paoloni C., Gensch M., Weightman P., Williams G. P., Castro-Camus E., Cumming D. R. S., Simoens F., Escorcia-Carranza I., Grant J., Lucyszyn S., Kuwata-Gonokami M., Konishi K., Koch M., Schmuttenmaer C. A., Cocker T. L., Huber R., Markelz A. G., Taylor Z. D., Wallace V. P., Zeitler J. A., Sibik J., Korter T. M., Ellison B., Rea S., Goldsmith P., Cooper K. B., Appleby R., Pardo D., Huggard P. G., Krozer V., Shams H., Fice M., Renaud C., Seeds A., Stöhr A., Naftaly M., Ridler N., Clarke R., Cunningham J. E., Johnston M. B. The 2017 terahertz science and technology roadmap. J. Phys. D, Appl. Phys., 2017. Vol. 50, no. 4. 043001. DOI: https://doi.org/10.1088/1361-6463/50/4/043001

4. Grigoriev A. D., Ivanov V. A., Molokovsky S. I. Microwave Electronics. Springer Series in Advanced Microelectronics. Springer, 2018. 554 p. DOI: https://doi.org/10.1007/978-3-319-68891-6

5. Shin Y.-M., Barnett L. R., Luhmann N. C. Phase-shifted traveling-wave-tube circuit for ultrawideband highpower submillimeter-wave generation. IEEE Trans. Electron Devices, 2009, vol. 56, nо. 5, pp. 706–712.

6. Shin Y. M., Baig A., Barnett L. R., Luhmann N. C., Pasour J., Larsen P. Modeling investigation of an ultrawideband terahertz sheet beam traveling-wave tube amplifi er circuit. IEEE Trans. Electron Devices, 2011, vol. 58, no. 9, pp. 3213–3219.

7. Pasour J., Wright E., Nguyen Kh., Balkcum A., Wood F. N., Myers R. E., Levush B. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifi er at 94 GHz. IEEE Trans. Electron Devices, 2014, vol. 61, no. 6, pp. 1630–1636.

8. Shi X., Wang Z., Tang X., Tang T., Gong H., Zhou Q., Bo W., Zhang Y., Duan Z., Wei Y., Gong Y., Feng J. Study on wideband sheet beam traveling wave tube based on staggered double vane slow wave structure. IEEE Trans. Plasma Sci., 2014, vol. 42, no. 12, pp. 3996–4003.

9. Wang J., Shu G., Liu G., Yang L.Y., Luo Y. Ultrawideband coalesced-mode operation for a sheet-beam travelingwave tube. IEEE Trans. Electron Devices, 2016, vol. 63, no. 1, pp. 504–511.

10. Baig A., Gamzina D., Kimura T., Atkinson J. E.,Domier C., Popovic B., Himes L., Barchfeld R. Field M., Luhmann N. C. Performance of a nano-CNC machined 220-GHz traveling wave tube amplifi er. IEEE Trans. Electron Devices, 2017, vol. 64, no. 5, pp. 2390–2397.

11. Srivastava V. Nonlinear analysis of beam-wave interaction in a planar THz travelling-wave tube amplifi er. J. Electromagnetic Waves Appl., 2018, vol. 32, no. 2, pp. 190–203.

12. Nusinovich G. S., Cooke S. J. Botton M., Levush B. Wave coupling in sheet- and multiple-beam traveling-wave tubes. Phys. Plasmas, 2009, vol. 16, no. 6, pp. 063102.

13. Gee A., Shin Y. M. Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure. Phys. Plasmas, 2013, vol. 20, no. 7, pp. 073106.

14. Ruan C., Zhang M., Dai J., Zhang C., Wang S., Yang X., Feng J. W-band multiple beam staggered double-vane traveling wave tube with broad band and high output power. IEEE Trans. Plasma Sci., 2015, vol. 43, no. 7, pp. 2132–2139.

15. Shu G., Liu G., Chen L., Bambarandage H., Qian Zh. Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams. J. Phys. D: Appl. Phys., 2018, vol. 51, no. 5, pp. 055107.

16. Shu G. X., Liu G., Qian Z. F. Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams. Opt. Express, 2018, vol. 26, no. 7, pp. 8040–8048.

17. Rozhnev A. G., Ryskin N. M., Karetnikova T. A., Torgashev G. V., Sinitsyn N. I., Shalayev P. D., Burtsev A. A. Studying characteristics of the slowing-down system of the traveling-wave tube with a sheet electron beam. Radiophysics and Quantum Electronics, 2014, vol. 56, no. 8–9, pp. 542–553.

18. Karetnikova T. A., Rozhnev A. G., Ryskin N. M., Torgashov G. V., Sinitsyn N. I., Grigoriev Y. A., Burtsev A. A., Shalaev P. D. Modeling a subterahertz traveling-wave tube with a slow-wave structure of the double grating type and a sheet electron beam. Journal of Communications Technology and Electronics, 2016, vol. 61, nо. 1, pp. 50–55. DOI: https://doi.org/10.1134/S1064226915120116

19. Karetnikova T. A., Rozhnev A. G., Ryskin N. M., Fedotov A. E., Mishakin S. V., Ginzburg N. S. Gain analysis of a 0.2-THz traveling-wave tube with sheet electron beam and staggered grating slow wave structure. IEEE Trans. Electron Devices, 2018, vol. 65, no. 6, pp. 2129–2134. DOI: https://doi.org/10.1109/TED.2017.2787960

20. Navrotsky I. A., Burtsev A. A., Kivokurtsev A. Y., Shumikhin K. V., Shalaev P. D., Karetnikova T. A., Ryskin N. M. Development of electron-optical system with three elliptic electron beams for a THz-band vacuum-tube device. 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT). Liverpool, UK, 2017, pp. 8068467. DOI: https://doi.org/10.1109/UCMMT.2017.8068467

21. Navrotsky I. A., Burtsev A. A., Danilushkin A. V., Karetnikova T. A., Ryskin N. M., Shumikhin K. V. Developing of EOS model with elliptical beams for THz devices. International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov, IEEE, 2018, vol. 1, pp. 170–174. DOI: https://doi.org/10.1109/APEDE.2018.8542203

22. Navrotsky I. A., Burtsev A. A., Danilushkin A. V. Parametric 3D modeling of low perveance elleptical electron beams for devices of THz range. International Conference on Actual Problems of Electron Devices Engineering (APEDE). Saratov, IEEE, 2018, vol. 1, pp. 166–169. DOI: https://doi.org/10.1109/APEDE.2018.8542283

23. Nguyen K. T., Pasour J. A., Antonsen T. M., Larsen P. B., Petillo J. J., Levush B. Intense sheet electron beam transport in a uniform solenoidal magnetic fi eld. IEEE Trans. Electron Devices, 2009, vol. 56, nо. 5, pp. 744–752. DOI: https://doi.org/10.1109/TED.2009.2015420

24. Ruan C. J., Wang S. Z., Han Y., Li Q. S., Yang X. D. Theoretical and experimental investigation on intense sheet electron beam transport with its diocotron instability in a uniform magnetic fi eld. IEEE Trans. Electron Devices, 2014, vol. 61, nо. 6, pp. 1643–1650. DOI: https://doi.org/10.1109/TED.2014.2299286

25. Shevchik V. N., Trubetskov D. I. Analiticheskie metody rascheta v jelektronike SVCh [Analytical methods of calculation in microwave electronics]. Moscow, Sov. Radio Publ., 1970. 584 p. (in Russian).

26. Katz A. M., Ilina E. M., Mankin I. A. Nelinejnye javlenija v SVCh priborah O-tipa s dlitel’nym vzaimodejstviem [Nonlinear phenomena in O-type microwave devices with long-term interaction]. Moscow, Sov. Radio Publ., 1975. 296 pp. (in Russian).

27. Lei X., Wei Y., Wang Y., Zhou Q., Wu G., Ding C., Li Q., Zhang L., Jiang X., Gong Y., Wang W. Fullwave analysis of the high frequency characteristics of the sine waveguide slow-wave structure. AIP Advances, 2017, vol. 7, no. 8, pp. 085111. DOI: https://doi.org/10.1063/1.4997329

28. Kowalski E. J., Shapiro M. A., Temkin R. J. An overmoded W-band coupled-cavity TWT. IEEE Trans. Electron Devices, 2015, vol. 62, no. 5, pp. 1609–1616. DOI: https://doi.org/10.1109/TED.2015.2407865