Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Sagaidachnyi A. A., Volkov I. Y., Zaletov I. S., Mayskov D. I., Fomin A. V., Antonov A. V., Tsoy M. O., Skripal A. V. Restoration of microhemodynamics on the human body surface using the fractional derivative of temperature oscillations. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 3, pp. 316-332. DOI: 10.18500/1817-3020-2025-25-3-316-332, EDN: MDMFNR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
29.08.2025
Full text:
(downloads: 130)
Language: 
Russian
Article type: 
Article
UDC: 
57.087.3:612.1
EDN: 
MDMFNR

Restoration of microhemodynamics on the human body surface using the fractional derivative of temperature oscillations

Autors: 
Sagaidachnyi Andrey Aleksandrovich, Saratov State University
Volkov Ivan Yu., Saratov State University
Zaletov Ivan Sergeevich, Saratov State University
Mayskov Dmitriy Igorevich, Saratov State University
Fomin Andrey Vladimirovich, Saratov State University
Antonov Andrey V., Saratov State University
Tsoy Mariya Olegovna, Saratov State University
Skripal Anatoliy Vladimirovich, Saratov State University
Abstract: 

Background and Objectives: The possibility of restoring microhemodynamics on the human body surface was investigated through the analysis of skin temperature oscillation signals using integer and fractional order derivatives. Materials and Methods: Microhemodynamic data were simultaneously recorded via photoplethysmographic imaging and infrared thermography in four regions of the hand. To reconstruct microhemodynamics from temperature data, a previously described thermal wave model, along with integer and fractional order derivatives, were applied. A comparative analysis of the amplitude-frequency and phase-frequency characteristics of these transformations was conducted. The fractional-order derivative of temperature oscillations was calculated as the Riemann – Liouville differintegral. For a group of subjects, correlations were computed between the reconstructed microhemodynamic results during a 15-minute resting state using the thermal wave model and the integer/fractional-order derivatives of temperature. Results: It has been established that employing a fractional-order derivative of order 0.4 has yielded the best correlation between the frequency characteristics and those of the thermal wave model. The enhanced temporal-domain signal correlation achieved with the fractional-order derivative, compared to the integer-order derivative, is attributed to more accurate amplitude-frequency and phase-frequency transformations of temperature oscillations. These transformations align with the attenuation and dispersion processes of thermal waves in the skin. Conclusions: For precise restoration of microhemodynamics using skin temperature time derivatives, a the fractional-order derivative of 0.4 is preferable over integer-order derivatives. The described method can serve as a thermalbased technique for investigating blood flow oscillations in microvessels across multiple anatomical regions simultaneously.

Reference: 
  1. Tankanag A. V., Tikhonova I. V., Guseva I. E., Grinevich A. A. Effect of orthostasis on skin microhemodynamics regulation of upper and lower extremities in type 2 diabetes mellitus. In: Murav’ev A. V., ed. Mikrotsirkulyatsiya i Gemoreologiya: Mezhdunarodnaya konferentsiya po mikro-tsirkulyatsii i gemoreologii: materialy mezhdunarodnoy nauchnoy konferentsii (Yaroslavl’, 10–11 iyulya 2023 g.). Yaroslavl’, RIO YGPU, 2023, p. 99 (in Russian).
  2. Frolov A. V., Loktionova Yu. I., Zharkikh E. V., Sidorov V. V., Tankanag A. V., Dunaev A. V. The reaction of blood microcirculation in the skin of various parts of the body after performing yoga breathing exercises. Regional Blood Circulation and Microcirculation, 2023, vol. 22, iss. 1 (85), pp. 72–84 (in Russian). https://doi.org/10.24884/1682-6655-2023-22-1-72-84
  3. Zharkikh E. V., Makovik I. N., Potapova E. V., Dremin V. V., Zherebtsov E. A., Zherebtsova A. I., Dunaev A. V., Sidorov V. V., Krupatkin A. I. Optical noninvasive diagnostics of the functional state of microcirculatory bed in patients with disorders of peripheral haemodynamics. Regional Blood Circulation and Microcirculation, 2018, vol. 17, no. 3 (67), pp. 23–32 (in Russian). https://doi.org/10.24884/1682-6655-2018-17-3-23-32
  4. Glazkov A .A., Glazkova P. A., Kulikov D. A., Rogatkin D. A. The influence of gender differences of skin microhemodynamics parameters assessed in heating and occlusion tests. Regional Blood Circulation and Microcirculation, 2022, vol. 21, no. 4 (84), pp. 33–41 (in Russian). https://doi.org/10.24884/1682-6655-2022-21-4-33-41
  5. Dunaev A. V. The method for evaluating adaptive changes in human microcirculatory-tissue systems. Fundamental and Applied Problems of Engineering and Technology, 2020, no. 4 (342), pp. 88–89 (in Russian). https://doi.org/10.33979/2073-7408-2020-342-4-1-88-99
  6. Mikhailova M. A., Fedorovich A. A., Gorshkov A. Yu., Korolev A. I., Dadaeva V. A., Zharkikh E. V., Loktionova Yu. I., Dunaev A. V., Sidorov V. V., Drapkina O. M. Comparative evaluation of the parameters of laser doppler flowmetry of the skin of healthy persons using devices of various modifications. Regional Blood Circulation and Microcirculation, 2023, vol. 22, no. 3 (8), pp. 41–50 (in Russian). https://doi.org/10.24884/1682-6655-2023-22-3-41-50
  7. Mizeva I., Dremin V., Potapova E., Zherebtsov E., Kozlov I., Dunaev A. Wavelet analysis of the temporal dynamics of the laser speckle contrast in human skin. IEEE Transactions on Biomedical Engineering, 2019, vol. 67, iss. 7, pp. 1882–1889. https://doi.org/10.1109/TBME.2019.2950323
  8. Mizeva I., Potapova E., Dremin V., Kozlov I., Dunaev A. Spatial heterogeneity of cutaneous blood flow respiratory-related oscillations quantified via laser speckle contrast imaging. PLoS ONE, 2021, vol. 16, no. 5, art. e0252296. https://doi.org/10.1371/journal.pone.0252296
  9. Potapova E. V., Seryogina E. S., Dremin V. V., Stavtsev D. D., Kozlov I. O., Zherebtsov E. A., Mamoshin A. V., Ivanov Yu. V., Dunaev A. V. Laser speckle contrast imaging of blood microcirculation in pancreatic tissues during laparoscopic interventions. Quantum Electronics, 2020, vol. 50, no. 1, pp. 33–40. https://doi.org/10.1070/QEL17207
  10. Cracowski J. L., Roustit M. Human skin microcirculation. Comprehensive Physiology, 2020, vol. 10, iss. 3, pp. 1105–1154. https://doi.org/10.1002/cphy.c190008
  11. Volkov I. Y., Sagaidachnyi A. A., Fomin A. V. Photoplethysmographic imaging of hemodynamics and two-dimensional oximetry. Izvestiya of Saratov University. Physics, 2022, vol. 22, iss. 1, pp. 15–45. https://doi.org/10.18500/1817-3020-2022-22-1-15-45
  12. Podtaev S. Yu., Popov A. V., Morozov M. K., Frick P. G. A. Study of blood microcirculation using wavelet analysis of skin temperature fluctuations. Regional Blood Circulation and Microcirculation, 2009, vol. 8, no. 3 (31), pp. 14–20 (in Russian). EDN: MUNGCV
  13. Podtaev S. Yu., Mizeva I. A., Smirnova E. N. Diagnostika funkcional’nogo sostoyaniya mikrocirkulyacii na osnove termometrii visokogo razreshenya. Vestnik Permskogo federal’nogo issledovatel’skogo tcentra URO RAN, 2012, no. 3–4, pp. 11–20 (in Russian).
  14. Frick P., Mizeva I., Podtaev S. Skin temperature variations as a tracer of microvessel tone. Biomedical Signal Processing and Control, 2015, vol. 21, pp. 1–7. https://doi.org/10.1016/j.bspc.2015.04.014
  15. Shusterman V., Anderson K. P., Barnea O. Spontaneous skin temperature oscillations in normal human subjects. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1997, vol. 273, iss. 3, pt. 2, pp. R1173–R1181. https://doi.org/10.1152/ajpregu.1997.273.3.R1173
  16. Ley O., Deshpande C. V. Comparison of two mathematical models for the study of vascular reactivity. Computers in Biology and Medicine, 2009, vol. 39, iss. 7, pp. 579–589. https://doi.org/10.1016/j.compbiomed.2008.12.003
  17. Sagaidachnyi A. A., Skripal A. V., Fomin A. V., Usanov D. A. Determination of the amplitude and phase relationships between oscillations in skin temperature and photoplethysmography-measured blood flow in fingertips. Physiological Measurement, 2014, vol. 35, no. 2, pp. 153–156. https://doi.org/10.1088/0967-3334/35/2/153
  18. Sagaidachnyi A. A., Fomin A. V., Usanov D. A., Skripal A. V. Thermography-based blood flow imaging in human skin of the hands and feet: A spectral filtering approach. Physiological Measurement, 2017, vol. 38, no. 2, pp. 272–288. https://doi.org/10.1088/1361-6579/aa4eaf
  19. Sagaidachnyi A., Fomin A., Usanov D., Skripal A. Realtime technique for conversion of skin temperature into skin blood flow: Human skin as a low-pass filter for thermal waves. Computer Methods in Biomechanics and Biomedical Engineering, 2019, vol. 22, no. 12, pp. 1009–1019. https://doi.org/10.1080/10255842.2019.1615058
  20. Fujimasa I., Chinzei T., Saito I. Converting far infrared image information to other physiological data. IEEE Engineering in Medicine and Biology Magazine, 2000, vol. 19, iss. 3, pp. 71–76. https://doi.org/10.1109/51.844383
  21. Merla A., Di Donato L., Romani G. L., Proietti M., Salsano F. Comparison of thermal infrared and laser doppler imaging in the assessment of cutaneous tissue perfusion in scleroderma patients and healthy controls. International Journal of Immunopathology and Pharmacology, 2008, vol. 21, iss. 3, pp. 679–686. https://doi.org/10.1177/039463200802100322
  22. Gorbach A. M., Wang H., Wiedenbeck B., Liu W., Smith P. D., Elster E. Functional assessment of hand vasculature using infrared and laser speckle imaging. Proceedings of SPIE, 2009, vol. 7169, art. 716919. https://doi.org/10.1117/12.809589
  23. Tang Y., Xu F., Lei P., Li G., Tan Z. Spectral analysis of laser speckle contrast imaging and infrared thermography to assess skin microvascular reactive hyperemia. Skin Research and Technology, 2023, vol. 29, no. 4, art. e13308. https://doi.org/10.1111/srt.13308
  24. Sagaidachnyi A. A., Volkov I. Y., Tsoy M. O., Fomin A. V., Mayskov D. I., Antonov A. В., Zaletov I. S., Skripal A. V. Assessment of spatiotemporal heterogeneity of two-dimensional images on the example of photoplethysmograpic imaging of hemodynamics. Izvestiya of Saratov University. Physics, 2023, vol. 23, iss. 2, pp. 128–140 (in Russian). https://doi.org/10.18500/1817-3020-2023-23-2-128-140
  25. Procka P., Celovska D., Smondrk M., Borik S. Correlation mapping of perfusion patterns in cutaneous tissue. Applied Sciences, 2022, vol. 12, no. 15, art. 7658. https://doi.org/10.3390/app12157658
  26. Sagaidachnyi A. A., Usanov D. A., Skripal A. V., Fomin A. V. Thermo-electrical analogy of skin properties and low-pass filter, correlation between skin temperature and blood flow oscillations in extremities. Matematicheskaya Biologiya i Bioinformatika [Mathematical Biology and Bioinformatics], 2014, vol. 9, iss. 2, pp. 309–318 (in Russian). https://doi.org/10.17537/2014.9.309
  27. Sagaidachnyi A. A., Fomin A. V. Analysis of time derivative of the temperature response of fingers on the brachial occlusion and its relationship with hemodynamic parameters. Regional Blood Circulation and Microcirculation, 2017, vol. 16, no. 3 (63), pp. 31–40 (in Russian). https://doi.org/10.24884/1682-6655-2017-16-3-31-40
  28. Zhmakin A. I. Heat conduction beyond the Fourier law. Technical Physics, 2021, vol. 66, pp. 1–22. https://doi.org/10.1134/S1063784221010242
  29. Hristov J. Bio-heat models revisited: Concepts, derivations, nondimensalization and fractionalization approaches. Frontiers in Physics, 2019, vol. 7, art. 189. https://doi.org/10.3389/fphy.2019.00189
  30. Tang Y., Mizeva I., He Y. A modeling study on the influence of blood flow regulation on skin temperature pulsations. Proceedings of SPIE, 2017, vol. 10337, art. 1033716. https://doi.org/10.1117/12.2267952
  31. Sagaidachnyi A. A., Fomin A. V., Volkov I. U. Limit capabilities of modern thermal imaging cameras as a tool for investigation of peripheral blood flow oscillations within different frequency ranges. Meditsinskaya Fizika, 2016, no. 4 (72), pp. 84–93 (in Russian). EDN: XCFWYD
  32. Sagaidachnyi A., Mayskov D., Fomin A., Zaletov I., Skripal A. Separate extraction of human eccrine sweat gland activity and peripheral hemodynamics from high- and low-quality thermal imaging data. Journal of Thermal Biology, 2022, vol. 110, art. 103351. https://doi.org/10.1016/j.jtherbio.2022.103351
  33. Sagaidachnyi A. A., Usanov D. A., Skripal A. V., Fomin A. V. Thermal imaging of the skin blood flow oscillations in extremities: Modification of the spectral components. Regional Blood Circulation and Microcirculation, 2015, vol. 14, no. 1 (53), pp. 46–52 (in Russian) https://doi.org/10.24884/1682-6655-2015-14-1-46-52
  34. Sagaidachnyi A. A., Skripal A. V., Fomin A. V., Usanov D. A. Method of the photoplethysmogram restoration in the band of endothelial and neurogenic oscillations through the analysis of the finger tips temperature. Regional Blood Circulation and Microcirculation, 2013, vol. 12, no. 3 (47), pp. 22–28 (in Russian) https://doi.org/10.24884/1682-6655-2013-12-3-22-28
  35. Usanov D. A., Sagaidachnyi A. A., Skripal A. V., Fomin A. V. Interrelation of temperature and blood flow oscillations of fingers. Regional Blood Circulation and Microcirculation, 2012, vol. 11, no. 2 (42), pp. 37–42 (in Russian). https://doi.org/10.24884/1682-6655-2012-11-2-37-42
  36. Sagaidachnyi A. A., Volkov I. Y., Fomin A. V., Zaletov I. S., Skripal A. V. Thermometric device for monitoring fluctuations in blood volume filling based on a high-pass filter. Biomedical Engineering, 2021, vol. 55, no. 3, pp. 157–160. https://doi.org/10.1007/s10527-021-10092-0
  37. Pakarinen T., Oksala N., Vehkaoja A. IRlab-Platform for thermal video analysis in evaluation of peripheral thermal behavior and blood perfusion. Informatics in Medicine Unlocked, 2022, vol. 30, art. 100940. https://doi.org/10.1016/j.imu.2022.100940
  38. McQuilkin G. L., Panthagani D., Metcalfe R. W., Hassan H., Yen A. A., Naghavi M., Hartley C. J. Digital thermal monitoring (DTM) of vascular reactivity closely correlates with doppler flow velocity // Proceedings of the Annual International Conference of the IEEE “Engineering in Medicine and Biology Society, EMBC. 2009”. Minneapolis, Minnesota, USA, 2009, pp. 1100–1103. https://doi.org/10.1109/IEMBS.2009.5333962
  39. Kisela T. Fractional differential equations and their applications. Brno, Institute of Mathematics, Faculty of Mechanical Engineering, 2008. Available at: https://www.vut.cz/ (accessed June 14, 2025).
  40. Shitzer A., Stroschein L. A., Gonzalez R. R., Pandolf K. B. Lumped-parameter tissue temperature-blood perfusion model of a cold-stressed fingertip. Journal of Applied Physiology, 1996, vol. 80, no. 5, pp. 1829–1834. https://doi.org/10.1152/jappl.1996.80.5.1829
  41. Sagaidachnyi A. A. Reactive hyperemia test: Methods of analysis, mechanisms of reaction and prospects. Regional Blood Circulation and Microcirculation, 2018, vol. 17, no. 3 (67), pp. 5–22 (in Russian). https://doi.org/10.24884/1682-6655-2018-17-3-5-22
Received: 
13.03.2025
Accepted: 
15.05.2025
Published: 
29.08.2025