Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Korobko M. A., Bukh A. V. Recovery of compartment model parameters of dynamical systems for the epidemiological SIR model. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 2, pp. 147-156. DOI: 10.18500/1817-3020-2025-25-2-147-156, EDN: UPIJYC

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.06.2025
Full text:
(downloads: 201)
Language: 
Russian
Article type: 
Article
UDC: 
530.182:004.942:616-036.22
EDN: 
UPIJYC

Recovery of compartment model parameters of dynamical systems for the epidemiological SIR model

Autors: 
Korobko Mikhail A., Saratov State University
Bukh Andrei Vladimirovich, Saratov State University
Abstract: 

Background and Objectives: In problems where the model of dynamical system is known and the parameters need to be determined, researchers most often encounter the problem of ”getting stuck” in local minima of the cost function. Most known methods do not guarantee finding the global minimum, although they increase the probability of finding it. A known method of avoiding local maxima, which consists of simultaneously using several cost functions that behave differently in the vicinity of local minima, detecting the minimum as local, in some cases does not find a way to leave the region of the local minimum of the cost function. In this paper, we propose an improvement in the latter method, which allows finding the global minimum with a higher probability. Materials and Methods: In this paper, 4 different error values were calculated at each iteration of the parameter selection algorithm. The parameter values were saved when at least one of the cost functions reaches a new minimum value. Both the parameters were varied, and the random choice between the saved sets of parameters corresponding to the smallest value of at least one of the cost functions was made, when the procedure is “getting stuck” in local minima. Results: An improved algorithm for estimating the values of control parameters of ordinary differential equation models has been presented. The method demonstrates good results in restoring the parameters of the considered dynamical system both in the case of steady-state solutions different from the equilibrium state and in the case of transient processes. Conclusion: As the results of numerical modeling using the described algorithm have shown, preserving several sets of parameters that correspond to the best values of error values allows us to avoid local minima of cost functions with a higher probability in the presence of noise.

Acknowledgments: 
This work was supported by the Grant Council of the President of the Russian Federation (project No. SP-774.2022.5).
Reference: 
  1. Bocharov G. A., Rihan F. A. Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics, 2000, vol. 125, no. 1–2, pp. 183–199. https://doi.org/10.1016/S0377-0427(00)00468-4
  2. Polynikis A., Hogan S. J., Di Bernardo M. Comparing different ODE modelling approaches for gene regulatory networks. Journal of Theoretical Biology, 2009, vol. 261, no. 4, pp. 511–530. https://doi.org/10.1016/j.jtbi.2009.07.040
  3. Miao H., Xia X., Perelson A. S., Wu H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Review, 2011, vol. 53, no. 1, pp. 3–39. https//doi.org/10.1137/090757009
  4. Dahlhoff E. P. Biochemical indicators of stress and metabolism: Applications for marine ecological studies. The Annual Review of Physiology, 2004, vol. 66, pp. 183–207. https://doi.org/10.1146/annurev.physiol.66.032102.114509
  5. McLean K. A. P., McAuley K. B. Mathematical modelling of chemical processes – obtaining the best model predictions and parameter estimates using identifiability and estimability procedures. The Canadian Journal of Chemical Engineering, 2012, vol. 90, no. 2, pp. 351–366. https://doi.org/10.1002/cjce.20660
  6. Boukouvala F., Hasan M. M. F., Floudas C. A. Global optimization of general constrained grey-box models: New method and its application to constrained PDEs for pressure swing adsorption. Journal of Global Optimization, 2017, vol. 67, pp. 3–42. https://doi.org/10.1007/s10898-015-0376-2
  7. Edsberg L., Wedin P. Å. Numerical tools for parameter estimation in ODE-systems. Optimization Methods and Software, 1995, vol. 6, no. 3, pp. 193–217. https://doi.org/10.1080/10556789508805633
  8. Bukh A. V., Kashtanova S. V., Shepelev I. A. Complex error minimization algorithm with adaptive change rate. Chaos, Solitons & Fractals, 2023, vol. 176, art. 114154. https://doi.org/10.1016/j.chaos.2023.114154
  9. Wright A. H. Genetic algorithms for real parameter optimization. Foundations of Genetic Algorithms, 1991, vol. 1, pp. 205–218. https://doi.org/10.1016/B978-0-08-050684-5.50016-1
  10. Dondelinger F., Husmeier D., Rogers S., Filippone M. ODE parameter inference using adaptive gradient matching with Gaussian processes. Journal of Machine Learning Research, 2013, vol. 31, pp. 216–228.
  11. Newton I. The Principia: Mathematical Principles of Natural Philosophy. Translation by I. Bernard Cohen and Anne Whitman. Berkeley, Univ. of California Press, 1999. 974 p.
  12. Fletcher R., Reeves C. M. Function minimization by conjugate gradients. The Computer Journal, 1964, vol. 7, no. 2, pp. 149–154. https://doi.org/10.1093/comjnl/7.2.149
  13. Martí R., Resende M. G. C., Ribeiro C. C. Multi-start methods for combinatorial optimization. European Journal of Operational Research, 2013, vol. 226, iss. 1, pp. 1–8. https://doi.org/10.1016/j.ejor.2012.10.012
  14. Mirjalili S., Jangir P., Saremi S. Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 2017, vol. 46, pp. 79–95. https//doi.org/10.1007/s10489-016-0825-8
  15. Hu X., Shonkwiler R., Spruill M. C. Random restarts in global optimization. Georgia Institute of technology, Atlanta, GA, 1994. 32 p. Available at: https://www.researchgate.net/publication/40220792_Random_Restarts_in_Glo... (accessed 20 September 2024).
  16. Goffe W. L., Ferrier G. D., Rogers J. Global optimization of statistical functions with simulated annealing. Journal of Econometrics, 1994, vol. 60, no. 1–2, pp. 65–99. https://doi.org/10.1016/0304-4076(94)90038-8
  17. Mirjalili S., Mirjalili S. M., Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, vol. 69, pp. 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  18. Trivedi I. N., Pradeep J., Narottam J., Arvind K., Dilip L. Novel adaptive whale optimization algorithm for global optimization. Indian Journal of Science and Technology, 2016, vol. 9, no. 3, pp. 319–326. https://doi.org/10.17485/ijst/2016/v9i38/101939
  19. Buch H., Trivedi I. N., Jangir P. Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation. Cogent Engineering, 2017, vol. 4, no. 1, art. 1286731. https://doi.org/10.1080/23311916.2017.1286731
  20. Jangir P., Parmar S. A., Trivedi I. N., Bhesdadiya R. H. A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem. Engineering Science and Technology, an International Journal, 2017, vol. 20, no. 2, pp. 570–586. https://doi.org/1016/j.jestch.2016.10.007
  21. Jin Y., Wang W., Xiao S. An SIRS model with a nonlinear incidence rate. Chaos, Solitons & Fractals, 2007, vol. 34, no. 5, pp. 1482–1497. https://doi.org/10.1016/j.chaos.2006.04.022
  22. Barman M., Mishra N. Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks. Chaos, Solitons & Fractals, 2024, vol. 178, art. 114351. https://doi.org/10.1016/j.chaos.2023.114351
  23. Buonomo B., Giacobbe A. Oscillations in SIR behavioural epidemic models: The interplay between behaviour and overexposure to infection. Chaos, Solitons & Fractals, 2023, vol. 174, art. 113782. https://doi.org/10.1016/j.chaos.2023.113782
Received: 
27.09.2024
Accepted: 
10.12.2024
Published: 
30.06.2025