Для цитирования:
Коробко М. А., Бух А. В. Восстановление параметров компартментной модели динамических систем на примере эпидемиологической модели SIR // Известия Саратовского университета. Новая серия. Серия: Физика. 2025. Т. 25, вып. 2. С. 147-156. DOI: 10.18500/1817-3020-2025-25-2-147-156, EDN: UPIJYC
Восстановление параметров компартментной модели динамических систем на примере эпидемиологической модели SIR
Представлен улучшенный алгоритм оценки значений управляющих параметров модельных динамических систем. Описан принцип работы алгоритма и продемонстрирована его работа на примере модели распространения эпидемий SIR в виде системы из трех обыкновенных дифференциальных уравнений. Метод демонстрирует хорошие результаты по восстановлению параметров данной модели как в случае установившихся решений, отличных от состояния равновесия, так и в случае переходных процессов. Рассмотрено влияние шума в исходных данных на качество определения значений модельных параметров.
- Bocharov G. A., Rihan F. A. Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics, 2000, vol. 125, no. 1–2, pp. 183–199. https://doi.org/10.1016/S0377-0427(00)00468-4
- Polynikis A., Hogan S. J., Di Bernardo M. Comparing different ODE modelling approaches for gene regulatory networks. Journal of Theoretical Biology, 2009, vol. 261, no. 4, pp. 511–530. https://doi.org/10.1016/j.jtbi.2009.07.040
- Miao H., Xia X., Perelson A. S., Wu H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Review, 2011, vol. 53, no. 1, pp. 3–39. https//doi.org/10.1137/090757009
- Dahlhoff E. P. Biochemical indicators of stress and metabolism: Applications for marine ecological studies. The Annual Review of Physiology, 2004, vol. 66, pp. 183–207. https://doi.org/10.1146/annurev.physiol.66.032102.114509
- McLean K. A. P., McAuley K. B. Mathematical modelling of chemical processes – obtaining the best model predictions and parameter estimates using identifiability and estimability procedures. The Canadian Journal of Chemical Engineering, 2012, vol. 90, no. 2, pp. 351–366. https://doi.org/10.1002/cjce.20660
- Boukouvala F., Hasan M. M. F., Floudas C. A. Global optimization of general constrained grey-box models: New method and its application to constrained PDEs for pressure swing adsorption. Journal of Global Optimization, 2017, vol. 67, pp. 3–42. https://doi.org/10.1007/s10898-015-0376-2
- Edsberg L., Wedin P. Å. Numerical tools for parameter estimation in ODE-systems. Optimization Methods and Software, 1995, vol. 6, no. 3, pp. 193–217. https://doi.org/10.1080/10556789508805633
- Bukh A. V., Kashtanova S. V., Shepelev I. A. Complex error minimization algorithm with adaptive change rate. Chaos, Solitons & Fractals, 2023, vol. 176, art. 114154. https://doi.org/10.1016/j.chaos.2023.114154
- Wright A. H. Genetic algorithms for real parameter optimization. Foundations of Genetic Algorithms, 1991, vol. 1, pp. 205–218. https://doi.org/10.1016/B978-0-08-050684-5.50016-1
- Dondelinger F., Husmeier D., Rogers S., Filippone M. ODE parameter inference using adaptive gradient matching with Gaussian processes. Journal of Machine Learning Research, 2013, vol. 31, pp. 216–228.
- Newton I. The Principia: Mathematical Principles of Natural Philosophy. Translation by I. Bernard Cohen and Anne Whitman. Berkeley, Univ. of California Press, 1999. 974 p.
- Fletcher R., Reeves C. M. Function minimization by conjugate gradients. The Computer Journal, 1964, vol. 7, no. 2, pp. 149–154. https://doi.org/10.1093/comjnl/7.2.149
- Martí R., Resende M. G. C., Ribeiro C. C. Multi-start methods for combinatorial optimization. European Journal of Operational Research, 2013, vol. 226, iss. 1, pp. 1–8. https://doi.org/10.1016/j.ejor.2012.10.012
- Mirjalili S., Jangir P., Saremi S. Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 2017, vol. 46, pp. 79–95. https//doi.org/10.1007/s10489-016-0825-8
- Hu X., Shonkwiler R., Spruill M. C. Random restarts in global optimization. Georgia Institute of technology, Atlanta, GA, 1994. 32 p. Available at: https://www.researchgate.net/publication/40220792_Random_Restarts_in_Glo... (accessed 20 September 2024).
- Goffe W. L., Ferrier G. D., Rogers J. Global optimization of statistical functions with simulated annealing. Journal of Econometrics, 1994, vol. 60, no. 1–2, pp. 65–99. https://doi.org/10.1016/0304-4076(94)90038-8
- Mirjalili S., Mirjalili S. M., Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, vol. 69, pp. 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
- Trivedi I. N., Pradeep J., Narottam J., Arvind K., Dilip L. Novel adaptive whale optimization algorithm for global optimization. Indian Journal of Science and Technology, 2016, vol. 9, no. 3, pp. 319–326. https://doi.org/10.17485/ijst/2016/v9i38/101939
- Buch H., Trivedi I. N., Jangir P. Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation. Cogent Engineering, 2017, vol. 4, no. 1, art. 1286731. https://doi.org/10.1080/23311916.2017.1286731
- Jangir P., Parmar S. A., Trivedi I. N., Bhesdadiya R. H. A novel hybrid particle swarm optimizer with multi verse optimizer for global numerical optimization and optimal reactive power dispatch problem. Engineering Science and Technology, an International Journal, 2017, vol. 20, no. 2, pp. 570–586. https://doi.org/1016/j.jestch.2016.10.007
- Jin Y., Wang W., Xiao S. An SIRS model with a nonlinear incidence rate. Chaos, Solitons & Fractals, 2007, vol. 34, no. 5, pp. 1482–1497. https://doi.org/10.1016/j.chaos.2006.04.022
- Barman M., Mishra N. Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks. Chaos, Solitons & Fractals, 2024, vol. 178, art. 114351. https://doi.org/10.1016/j.chaos.2023.114351
- Buonomo B., Giacobbe A. Oscillations in SIR behavioural epidemic models: The interplay between behaviour and overexposure to infection. Chaos, Solitons & Fractals, 2023, vol. 174, art. 113782. https://doi.org/10.1016/j.chaos.2023.113782
- 113 просмотров