Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Smirnov A. V., Atkin V. S., Grebennikov A. I., Revzina E. M., Kondrateva O. I., Sinyov I. V. Production of Tungsten Spherical Microparticles in Ultrasonic Field at Presence an Activator. Izvestiya of Sarat. Univ. Physics. , 2015, vol. 15, iss. 4, pp. 13-17. DOI: 10.18500/1817-3020-2015-15-4-13-17

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 44)
Language: 
Russian
Heading: 
UDC: 
УДК 721.762, 542.06

Production of Tungsten Spherical Microparticles in Ultrasonic Field at Presence an Activator

Autors: 
Smirnov Andrey Vladimirovich, Saratov State University
Atkin Vsevolod Stanislavovich, Saratov State University
Grebennikov Alexander Ivanovich, Saratov State University
Revzina Elena Mstislavovna, Saratov State University
Kondrateva Olga Iur'evna, Saratov State University
Sinyov Ilya Vladimirovich, Saratov State University
Abstract: 

It has been shown by experiments, that spherical tungsten microparticlein etching solution under the ultrasonic exposure is possible. The process of obtaining consists of two stages. At the first stage, by centrifuging a suspension of tungsten powder with an average particle size of 0.5 microns in the activator – etching from a water solution of potassium hydroxide and potassium ferricyanide, obtained tungsten thin plate of any shape, thickness 1–3 micrometers. In the second phase, in the environment of activator on a particle with an average size of 20 micron by the ultrasound laminated flat particles obtained at the first stage. Due to the ultrasound treatment in a form produced particles is close to spherical. The average particle size of the resulting powder was 42.9 micron.

Reference: 
  1. Ремпель А. А. Нанотехнологии, свойства и применения наноструктурированных материалов // Успехи химии. 2007. Т. 5, № 76. С. 474‒500.
  2. Полимерные композиционные материалы : структура, свойства, технология / под ред. А. А. Берлина. СПб. : ЦОП Профессия, 2011. 560 с.
  3. Lyukshin B. A., Panin S. V., Bochkareva S. A., Lyukshin P. A., Reutov A. I. A multilevel analysis of deformation and fracture of fi lled polymeric coatings for tribotechnical application // Engineering Fracture Mechanics. 2014. Vol. 130. P. 75‒82.
  4. Смирнов А. В., Синёв И. В., Шихабудинов А. М. Акустические свойства композита 0-3 на основе вольфрама и полистирола // Журнал радиоэлектроники. 2012. № 12. С. 1–16.
  5. Смирнов А. В., Синёв И. В. Капсулирование микрочастиц вольфрама в полистирол : тез. докл. междунар. науч.-техн. конф. Гомель : ИММС НАНБ, 2015. С. 172.
  6. Kuznetsova I. E., Zaitsev B. D., Shikhabudinov A. M. Characterization of mechanical and electrical properties of nanocomposites // Polymer Composites / ed. by S. Thomas et.al. 2013. Vol. 2, № 7. P. 163‒184.
  7. Беккерт М., Клемм Х. Способы металлографического травления : справочник. М. : Металлургия, 1988. 400 с.
Краткое содержание:
(downloads: 45)