Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Hasanov K. A., Huseynov D. I., Dadashova V. V., Nabiyev A. E., Abbasov I. I. Phonon-Drag Thermopower in a Quantum Wire with Parabolic Confinement Potential for Electrons. Izvestiya of Saratov University. Physics , 2017, vol. 17, iss. 4, pp. 263-268. DOI: 10.18500/1817-3020-2017-17-4-263-268

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 346)
Language: 
Russian
UDC: 
537.9; 537.322.1; 538.935

Phonon-Drag Thermopower in a Quantum Wire with Parabolic Confinement Potential for Electrons

Autors: 
Hasanov Khanlar Aly ogly, Azerbaijan State Pedagogical University
Huseynov Dzhakhangir Islam ogly, Azerbaijan State Pedagogical University
Dadashova Vusala Valekh kyzy, Baku State University
Nabiyev Asef Enver Ogly, Azerbaijan State Pedagogical University
Abbasov Ibragim Isa ogly, Azerbaijan State University of Oil and Industry
Abstract: 

Background and Objectives: A quantitative theory of the phonondrag thermopower for one-dimensional degenerate electron gas in a quantum wire with parabolic confinement potential is presented. The temperature gradient is directed along the axis of the quantum wire. Due to the confinement, the energy spectrum and the wave function of the electron change substantially. It is assumed that the Fermi level is located between the zeroth and the first of the size quantization. Results: The analysis shows that the dominant scattering mechanism at low temperatures for a highly degenerate electron gas is the scattering by ionized impurities, and for the phonons it is the scattering on the sample boundary. In the temperature range, 1–2 K, the diffusion thermopower exceeds the phonon one. With increasing temperature, the phonon thermopower increases sharply, exceeding the diffusion one by an order of magnitude. The diffusion component of the thermopower varies approximately in inverse proportion to the concentration, and the phonon component is inversely proportional to the square of the concentration. It is shown that in the temperature interval 1–20 K the main contribution to the thermopower is given by the phonon-drag effect.

Reference: 

1. Bhattacharya P., Ghosh S., Stiff-Roberts A. D. Quantum dot opto-electronic devices. Annu. Rev. Mater. Res., 2004, vol. 34, iss. 1, pp. 1–40. DOI: https://doi.org/10.1146/annurev.matsci.34.040203.111535

2. Basabe-Desmonts L., Reinhoudt D. N., Crego-Calama M. Design of fl uorescent materials for chemical sensing. Chem. Soc. Rev., 2007, vol. 36, iss. 6, pp. 993–1017. DOI: https://doi.org/10.1039/B609548H

3. Rosenthal S. J., McBride J., Pennycook S. J., Feldman L. C. Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surf. Sci. Rep., 2007, vol. 62, iss. 4, pp. 111–157. DOI: https://doi.org/10.1016/j.surfrep.2007.02.001

4. Rhyner M. N., Smith A. M, Gao X., Mao H., Yang L., Nie S. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine, 2006, vol. 1, iss. 2, pp. 209–217. DOI: https://doi.org/10.2217/17435889.1.2.209

5. Fletcher R., Harris J. J., Foxon C. T., Tsaousidou M., Butcher P. N. Thermoelectric properties of a very-lowmobility two-dimensional electron gas. Phys. Rev. B, 1994, vol. 50, iss. 20, pp. 14991–14998. DOI: https://doi.org/10.1103/PhysRevB.50.14991

6. Kubakaddi S. S., Butcher P. N. A calculation of the phonon-drag thermopower of a 1D electron gas. J. Phys.: Condens. Matter., 1989, vol. 1, no. 25, pp. 3939–3946. DOI: https://doi.org/10.1088/0953-8984/1/25/006

7. Wu M. W., Horing N. J. M., Cui H. L. Phonon-drag effects on thermoelectric power. Phys. Rev. B., 1996, vol. 54, no. 8, pp. 5438–5443. DOI: https://doi.org/10.1103/PhysRevB.54.5438

8. Mao J., Liu Z., Ren Z. Size effect in thermoelectric materials. Quantum Materials 1, 2016, article number: 16028. DOI: https://doi.org/10.1038/npjquantmats.2016.28

9. Shi L. Thermal and thermoelectric transport innanostructures and low-dimensional systems. Nanoscale and Microscale Thermophysical Engineering, 2012, vol. 16, iss. 2, pp. 79–116. 

10. Sinyavskii E. P., Solovenko V. G. Specifi c features of the thermal electromotive force in Bi quantum wires in transverse magnetic and electric fi elds. Physics of the Solid State, 2014, vol. 56, no. 11, pp. 2197–2200 (in Russian). 

11. Dmitriev A. V., Zvyagin I. P. Current trends in the physics of thermoelectric materials. Physics-Uspekhi, 2010, vol. 53, no. 8, pp. 789–803. DOI: https://doi.org/10.3367/UFNe.0180.201008b.0821

12. Lyo S. K. Low-temperature phonon-drag thermoelectric power in heterojunctions. Phys. Rev. B, 1988, vol. 38, iss. 9, pp. 6345–6347. DOI: https://doi.org/10.1103/PhysRevB.38.6345

13. Hashimzade F. M., Babayev M. M., Mehdiyev B. H., Hasanov Kh. A. Magnetothermoelectric effects of 2D electron gas in quantum well with parabolic confi nement potential in-plane magnetic fi eld. Journal of Physics: Conference Series, 245, 2010, pp. 012015–012018. 

14. Fletcher R., Maan J. C., Weimann G. Experimental results on the high-fi eld thermopower of a two-dimensional electron gas in a GaAs-Ga1-xAlxAs heterojunction. Phys. Rev. B, 1985, vol. 32, iss. 12, pp. 8477–8481. DOI: https://doi.org/10.1103/PhysRevB.32.8477

15. Askerov B. M. Electron transport phenomena in semiconductors. Singapore, New Jersey, London, World Scientifi c, 1994. 394 p. 

16. Gantmakher V. F., Levinson I. B. Carrier scattering in metals and semiconductors. Amsterdam, Noth-Holland, 1987. 459 p. 

17. Sinyavskii E. P., Sokovich S. M. Electrically induced luminescence in parabolic quantum wells in a magnetic fi eld. Physics of the Solid State, 2000, vol. 42, no. 9, pp. 1734–1738. DOI: https://doi.org/10.1134/1.1309461

Краткое содержание:
(downloads: 184)