For citation:
Demina P. A., Kozhevnikov I. O., Abramova A. M., Goryacheva I. Y. Optical labeling of individual melanoma cells using photoconvertible microparticles. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 1, pp. 30-40. DOI: 10.18500/1817-3020-2024-24-1-30-40, EDN: CNJXOT
Optical labeling of individual melanoma cells using photoconvertible microparticles
Background and Objectives: Photoconvertible markers are a useful approach for conducting complex fundamental and applied research in medicine and biology. Usually, photoconvertible proteins or dyes are used for this, but have some disadvantages (low stability, requirement for genetic modification, etc.). The goal of this research was to develop safe and stable photoconvertible markers for cell application. Materials and Methods: The polymer markers were obtained from polyelectrolyte microcapsules under hydrothermal synthesis with fluorescent dye rhodamine B. The spectral properties were studied using confocal microscopy and spectrometry. Results: Photoconversion of microparticles under the influence of laser irradiation was carried out due to the ability of rhodamine B molecules to hypsochromic shift the emission band, catalyzed by carbon structures formed in the shells of microparticles during hydrothermal synthesis. Hydrothermal synthesis also significantly changed the size and shape of microparticles. The thermally treated polyelectrolyte microparticles had high stability and a bright fluorescent signal. The microparticles were actively internalized by the B16F10 mouse melanoma cell line, providing labeling for 70% of all cells in the population at a ratio of 10 microparticles per cell. At the same time, metabolic activity did not decrease below 85%, and the morphology and ability of B16F10 cells to synthesize melanin remained within normal limits. It has been shown that microparticles can be safely photoconverted inside B16F10 cells under laser irradiation. Conclusion: The proposed strategy is useful for complex studies on the behavior of individual melanoma cancer cells in genetically and phenotypically heterogeneous populations, and also for studying a metastatic process.
- Konen J., Summerbell E., Dwivedi B., Galior K., Hou Y., Rusnak L., Chen A., Saltz J., Zhou W., Boise L. H., Vertino P., Cooper L., Salaita K., Kowalski J., Marcus A. I. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun., 2017, vol. 8, article no. 15078. https://doi.org/10.1038/ncomms15078
- Caires H. R., Gomez-Lazaro M., Oliveira C. M., Gomes D., Mateus D. D., Oliveira C., Barrias C. C., Barbosa M. A., Almeida C. R. Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2. Sci. Rep., 2015, vol. 5, article no. 10079. https://doi.org/10.1038/srep10079
- Adam V., Berardozzi R., Byrdin M., Bourgeois D. Phototransformable Fluorescent Proteins: Future Challenges. Curr. Opin. Chem. Biol., 2014, vol. 20, pp. 92–102. https://doi.org/10.1016/j.cbpa.2014.05.016
- Pletnev S., Shcherbakova D. M., Subach O. M., Pletneva N. V., Malashkevich V. N., Almo S. C., Dauter Z., Verkhusha V. V. Orange Fluorescent Proteins: Structural Studies of LSSmOrange, PSmOrange and PSmOrange2. PLoS ONE, 2014, vol. 9, article no. e99136. https://doi.org/10.1371/journal.pone.0099136
- Terskikh A., Fradkov A., Ermakova G., Zaraisky A., Tan P., Kajava A. V., Zhao X., Lukyanov S., Matz M., Kim S., Weissrnan I., Siebert P. “Fluorescent Timer”: Protein That Changes Color with Time. Science, 2000, vol. 290, article no. 1585. https://doi.org/10.1126/science.290.5496.1585
- Wachter R. M., Watkins J. L., Kim H. Mechanistic Diversity of Red Fluorescence Acquisition by GFP-like Proteins. Biochemistry, 2010, vol. 49, iss. 35, pp. 7417–7427. https://doi.org/10.1021/bi100901h
- Pellois J.-P., Hahn M. E., Muir T. W. Simultaneous Triggering of Protein Activity and Fluorescence. J. Am. Chem. Soc., 2004, vol. 126, pp. 7170–7171. https://doi.org/10.1038/srep10079
- Johansson M. K., Cook R. M. Intramolecular Dimers: A New Design Strategy for Fluorescence-Quenched Probes. Chem A Eur. J., 2003, vol. 9, iss. 15, pp. 3466–3471. https://doi.org/10.1002/chem.200304941
- Carlson A. L., Fujisaki J., Wu J., Runnels J. M., Turcotte R., Celso C. Lo, Scadden D. T., Strom T. B., Lin C. P. Tracking Single Cells in Live Animals Using a Photoconvertible Near-Infrared Cell Membrane Label. PLoS ONE, 2013, vol. 8, article no. e69257. https://doi.org/10.1371/journal.pone.0069257
- Basel M. T. Lipophilic Near-Infrared Dyes for In Vivo Fluorescent Cell Tracking. In: Basel M., Bossmann S., eds. Cell Tracking. Methods in Molecular Biology, 2020, vol. 2126. Humana, New York, NY, 2020, pp. 33–43. https://doi.org/10.1007/978-1-0716-0364-2_4
- Yeo D., Wiraja C., Chuah Y. J., Gao Y., Xu C. A Nanoparticle-based Sensor Platform for Cell Tracking and Status/Function Assessment. Sci. Rep., 2015, vol. 5, article no. 14768. https://doi.org/10.1038/srep14768
- Lassailly F., Griessinger E., Bonnet D. “Microenvironmental contaminations” induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood, 2010, vol. 115, iss. 26, pp. 5347–5354. https://doi.org/10.1182/blood-2009-05-224030
- Shcherbakova D. M., Sengupta P., Lippincott-Schwartz J., Verkhusha V. V. Photocontrollable Fluorescent Proteins for Superresolution Imaging. Annu. Rev. Biophys., 2014, vol. 43, pp. 303–329. https://doi.org/10.1146/annurev-biophys-051013-022836
- Sattarzadeh A., Saberianfar R., Zipfel W. R., Menassa R., Hanson M. R. Green to red photoconversion of GFP for protein tracking in vivo. Sci. Rep., 2015, vol. 5, article no. 11771. https://doi.org/10.1038/srep11771
- Gai M., Frueh J., Kudryavtseva V. L., Yashchenok A. M., Sukhorukov G. B. Polylactic Acid Sealed Polyelectrolyte Multilayer Microchambers for Entrapment of Salts and Small Hydrophilic Molecules Precipitates. ACS Appl. Mater. Interfaces, 2017, vol. 9, iss. 19, pp. 16536–16545. https://doi.org/10.1021/acsami.7b03451
- Shemiakina I. I., Ermakova G. V., Cranfill P. J., Baird M. A., Evans R. A., Souslova E. A., Staroverov D. B., Gorokhovatsky A. Y., Putintseva E. V., Gorodnicheva T. V., Chepurnykh T. V., Strukova L., Lukyanov S., Zaraisky A. G., Davidson M. W., Chudakov D. M., Shcherbo D. A monomeric red fluorescent protein with low cytotoxicity. Nat. Commun., 2012, vol. 3, article no. 1204. https://doi.org/10.1038/ncomms2208
- Zhang L., Gurskaya N. G., Merzlyak E. M., Staroverov D. B., Mudrik N. N., Samarkina O. N., Vinokurov L. M., Lukyanov S., Lukyanov K. A. Method for real-time monitoring of protein degradation at the single cell level. Biotechniques, 2007, vol. 42, iss. 4, pp. 446–450. https://doi.org/10.2144/000112453
- Miyawaki A. Proteins on the move: Insights gained from fluorescent protein technologies. Nat. Rev. Mol. Cell Biol., 2011, vol. 12, pp. 656–668. https://doi.org/10.1038/nrm3199
- Bajpai V. K., Swigut T., Mohammed J., Naqvi S., Arreola M., Tycko J., Kim T. C., Pritchard J. K., Bassik M. C., Wysocka J. A genome-wide genetic screen uncovers determinants of human pigmentation. Science, 2023, vol. 381, article no. aede6658. https://doi.org/10.1126/science.ade6289
- Kopach O., Zheng K., Dong L., Sapelkin A., Voitenko N., Sukhorukov G. B., Rusakov D. A. Nanoengineered microcapsules boost the treatment of persistent pain. Drug Deliv., 2018, vol. 25, pp. 435–447. https://doi.org/10.1080/10717544.2018.1431981
- Sapach A. Y., Sindeeva O. A., Nesterchuk M. V., Tsitrina A. A., Mayorova O. A., Prikhozhdenko E. S., Verkhovskii R. A., Mikaelyan A. S., Kotelevtsev Y. V., Sukhorukov G. B. Macrophage In Vitro and In Vivo Tracking via Anchored Microcapsules. ACS Appl. Mater. Interfaces, 2022, vol. 14, iss. 46, pp. 51579–51592. https://doi.org/10.1021/acsami.2c12004
- Sukhorukov G. B., Rogach A. L., Zebli B., Liedl T., Skirtach A. G., Köhler K., Antipov A. A., Gaponik N., Susha A. S., Winterhalter M., Parak W. J. Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation. Small, 2005, vol. 1, iss. 2, pp. 194–200. https://doi.org/10.1002/smll.200400075
- Timin A. S., Gould D. J., Sukhorukov G. B. Multi-layer microcapsules: Fresh insights and new applications. Expert Opin. Drug Deliv., 2017, vol. 14, iss. 5, pp. 583–587. https://doi.org/10.1080/17425247.2017.1285279
- Harrington W. N., Novoselova M. V., Bratashov D. N., Khlebtsov B. N., Gorin D. A., Galanzha E. I., Zharov V. P. Photoswitchable Spasers with a Plasmonic Core and Photoswitchable Fluorescent Proteins. Sci. Rep., 2019, vol. 9, article no. 12439. https://doi.org/10.1038/s41598-019-48335-6
- Riehl M., Harms M., Göttel B., Kubas H., Schiroky D., Mäder K. Acid-induced degradation of widely used NIR dye DiR causes hypsochromic shift in fluorescence properties. Eur. J. Pharm. Sci., 2019, vol. 132, pp. 27–33. https://doi.org/10.1016/j.ejps.2019.02.031
- Li J., Ji A., Lei M., Xuan L., Song R., Feng X., Lin H., Chen H. Hypsochromic Shift Donor–Acceptor NIR-II Dye for High-Efficiency Tumor Imaging. J. Med. Chem., 2023, vol. 66, iss. 12, pp. 7880–7893. https://doi.org/10.1021/acs.jmedchem.3c00253
- Takemura K., Imato K., Ooyama Y. Mechanofluorochromism of (D–π–) 2 A-type azine-based fluorescent dyes. RSC Adv., 2022, vol. 12, pp. 13797–13809. https://doi.org/10.1039/D2RA02431D
- Volodkin D. V., Petrov A. I., Prevot M., Sukhorukov G. B. Matrix Polyelectrolyte Microcapsules: New System for Macromolecule Encapsulation. Langmuir, 2004, vol. 20, iss. 8, pp. 3398–3406. https://doi.org/10.1021/la036177z
- Evans N. A. Photofading of Rhodamine Dyes: III. The Effect of Wavelength on the Fading of Rhodamine B. Text. Res. J., 1973, vol. 43, iss. 12, pp. 697–700. https://doi.org/10.1177/004051757304301201
- Butkevich A. N., Bossi M. L., Lukinaviиius G., Hell S. W. Triarylmethane Fluorophores Resistant to Oxidative Photobluing. J. Am. Chem. Soc., 2019, vol. 141, iss. 2, pp. 981–989. https://doi.org/10.1021/jacs.8b11036
- Cassidy J. P., Tan J. A., Wustholz K. L. Probing the Aggregation and Photodegradation of Rhodamine Dyes on TiO2. J. Phys. Chem. C, 2017, vol. 121, iss. 29, pp. 15610–15618. https://doi.org/10.1021/acs.jpcc.7b04604
- Lee S. Y., Kang D., Jeong S., Do H. T., Kim J. H. Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega, 2020, vol. 5, iss. 8, pp. 4233–4241. https://doi.org/10.1021/acsomega.9b04127
- Zhou Y., Zahran E. M., Quiroga B. A., Perez J., Mintz K. J., Peng Z., Liyanage P. Y., Pandey R. R., Chusuei C. C., Leblanc R. M. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Appl. Catal. B Environ., 2019, vol. 248, pp. 157–166. https://doi.org/10.1016/j.apcatb.2019.02.019
- Xu N., Huang H., Ouyang H., Wang H. Preparation of the heterojunction catalyst N-doping carbon quantum dots/P25 and its visible light photocatalytic activity. Sci. Rep., 2019, vol. 9, article no. 9971. https://doi.org/10.1038/s41598-019-46277-7
- Phang S. J., Tan L.-L. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catal. Sci. Technol., 2019, vol. 9, pp. 5882–5905. https://doi.org/10.1039/C9CY01452G
- Stepukhovich М. S., Abramova A. M., Bakal A. A., Goryacheva I. Yu. Novel degradable photocatalysts for wastewater treatment. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 2, pp. 148–158 (in Russian). https://doi.org/10.18500/1816-9775-2023-23-2-148-158
- Chen F., Liu W., Li H., Deng T., Xing B., Liu F. Rhodamine Fluorophores for STED Super-Resolution Biological Imaging. Anal. Sens., 2022, vol. 2, iss. 3, article no. e202100066. https://doi.org/10.1002/anse.202100066
- Demina P. A., Sindeeva O. A., Abramova A. M., Prikhozhdenko E. S., Verkhovskii R. A., Lengert E. V., Sapelkin A. V., Goryacheva I. Y., Sukhorukov G. B. Fluorescent Convertible Capsule Coding Systems for Individual Cell Labeling and Tracking. ACS Appl. Mater. Interfaces, 2021, vol. 13, iss. 17, pp. 19701–19709. https://doi.org/10.1021/acsami.1c02767
- Sukhorukov G. B., Donath E., Davis S., Lichtenfeld H., Caruso F., Popov V. I., Möhwald H. Stepwise polyelectrolyte assembly on particle surfaces: A novel approach to colloid design. Polym. Adv. Technol., 1998, vol. 9, iss. 10–11, pp. 759–767. https://doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11<759::AID-PAT48>3.0.CO;2-Q
- An Z., Kavanoor K., Choy M. L., Kaufman L. J. Polyelectrolyte microcapsule interactions with cells in two- and three-dimensional culture. Colloids Surfaces B Biointerfaces, 2009, vol. 70, iss. 1, pp. 114–123. https://doi.org/10.1016/j.colsurfb.2008.12.022
- Gao H., Goriacheva O. A., Tarakina N. V., Sukhorukov G. B. Intracellularly Biodegradable Polyelectrolyte/Silica Composite Microcapsules as Carriers for Small Molecules. ACS Appl. Mater. Interfaces, 2016, vol. 8, iss. 15, pp. 9651–9661. https://doi.org/10.1021/acsami.6b01921
- Chen Y., Sukhorukov G. B., Novak P. Visualising nanoscale restructuring of a cellular membrane triggered by polyelectrolyte microcapsules. Nanoscale, 2018, vol. 10, pp. 16902–16910. https://doi.org/10.1039/C8NR03870H
- Brueckner M., Jankuhn S., Jülke E.-M., Reibetanz U. Cellular interaction of a layer-by-layer based drug delivery system depending on material properties and cell types. Int. J. Nanomedicine, 2018, vol. 13, pp. 2079–2091. https://doi.org/10.2147/IJN.S153701
- Madkhali N., Alqahtani H. R., Al-Terary S., Laref A., Hassib A. Control of optical absorption and fluorescence spectroscopies of natural melanin at different solution concentrations. Opt. Quantum Electron., 2019, vol. 51, article no. 227. https://doi.org/10.1007/s11082-019-1936-3
- 580 reads