Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Demina P. A., Kozhevnikov I. O., Abramova A. M., Goryacheva I. Y. Optical labeling of individual melanoma cells using photoconvertible microparticles. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 1, pp. 30-40. DOI: 10.18500/1817-3020-2024-24-1-30-40, EDN: CNJXOT

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.03.2024
Full text:
(downloads: 128)
Language: 
Russian
Article type: 
Article
UDC: 
535:544
EDN: 
CNJXOT

Optical labeling of individual melanoma cells using photoconvertible microparticles

Autors: 
Demina Polina A., Saratov State University
Kozhevnikov Ilia Olegovich, Saratov State University
Abramova Anna Mihailovna, Saratov State University
Goryacheva Irina Yurievna, Saratov State University
Abstract: 

Background and Objectives: Photoconvertible markers are a useful approach for conducting complex fundamental and applied research in medicine and biology. Usually, photoconvertible proteins or dyes are used for this, but have some disadvantages (low stability, requirement for genetic modification, etc.). The goal of this research was to develop safe and stable photoconvertible markers for cell application. Materials and Methods: The polymer markers were obtained from polyelectrolyte microcapsules under hydrothermal synthesis with fluorescent dye rhodamine B. The spectral properties were studied using confocal microscopy and spectrometry. Results: Photoconversion of microparticles under the influence of laser irradiation was carried out due to the ability of rhodamine B molecules to hypsochromic shift the emission band, catalyzed by carbon structures formed in the shells of microparticles during hydrothermal synthesis. Hydrothermal synthesis also significantly changed the size and shape of microparticles. The thermally treated polyelectrolyte microparticles had high stability and a bright fluorescent signal. The microparticles were actively internalized by the B16F10 mouse melanoma cell line, providing labeling for 70% of all cells in the population at a ratio of 10 microparticles per cell. At the same time, metabolic activity did not decrease below 85%, and the morphology and ability of B16F10 cells to synthesize melanin remained within normal limits. It has been shown that microparticles can be safely photoconverted inside B16F10 cells under laser irradiation. Conclusion: The proposed strategy is useful for complex studies on the behavior of individual melanoma cancer cells in genetically and phenotypically heterogeneous populations, and also for studying a metastatic process.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 22-23-00313, https://www.rscf.ru/en/project/22-23-00313/).
Reference: 
  1. Konen J., Summerbell E., Dwivedi B., Galior K., Hou Y., Rusnak L., Chen A., Saltz J., Zhou W., Boise L. H., Vertino P., Cooper L., Salaita K., Kowalski J., Marcus A. I. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun., 2017, vol. 8, article no. 15078. https://doi.org/10.1038/ncomms15078
  2. Caires H. R., Gomez-Lazaro M., Oliveira C. M., Gomes D., Mateus D. D., Oliveira C., Barrias C. C., Barbosa M. A., Almeida C. R. Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2. Sci. Rep., 2015, vol. 5, article no. 10079. https://doi.org/10.1038/srep10079
  3. Adam V., Berardozzi R., Byrdin M., Bourgeois D. Phototransformable Fluorescent Proteins: Future Challenges. Curr. Opin. Chem. Biol., 2014, vol. 20, pp. 92–102. https://doi.org/10.1016/j.cbpa.2014.05.016
  4. Pletnev S., Shcherbakova D. M., Subach O. M., Pletneva N. V., Malashkevich V. N., Almo S. C., Dauter Z., Verkhusha V. V. Orange Fluorescent Proteins: Structural Studies of LSSmOrange, PSmOrange and PSmOrange2. PLoS ONE, 2014, vol. 9, article no. e99136. https://doi.org/10.1371/journal.pone.0099136
  5. Terskikh A., Fradkov A., Ermakova G., Zaraisky A., Tan P., Kajava A. V., Zhao X., Lukyanov S., Matz M., Kim S., Weissrnan I., Siebert P. “Fluorescent Timer”: Protein That Changes Color with Time. Science, 2000, vol. 290, article no. 1585. https://doi.org/10.1126/science.290.5496.1585
  6. Wachter R. M., Watkins J. L., Kim H. Mechanistic Diversity of Red Fluorescence Acquisition by GFP-like Proteins. Biochemistry, 2010, vol. 49, iss. 35, pp. 7417–7427. https://doi.org/10.1021/bi100901h
  7. Pellois J.-P., Hahn M. E., Muir T. W. Simultaneous Triggering of Protein Activity and Fluorescence. J. Am. Chem. Soc., 2004, vol. 126, pp. 7170–7171. https://doi.org/10.1038/srep10079
  8. Johansson M. K., Cook R. M. Intramolecular Dimers: A New Design Strategy for Fluorescence-Quenched Probes. Chem A Eur. J., 2003, vol. 9, iss. 15, pp. 3466–3471. https://doi.org/10.1002/chem.200304941
  9. Carlson A. L., Fujisaki J., Wu J., Runnels J. M., Turcotte R., Celso C. Lo, Scadden D. T., Strom T. B., Lin C. P. Tracking Single Cells in Live Animals Using a Photoconvertible Near-Infrared Cell Membrane Label. PLoS ONE, 2013, vol. 8, article no. e69257. https://doi.org/10.1371/journal.pone.0069257
  10. Basel M. T. Lipophilic Near-Infrared Dyes for In Vivo Fluorescent Cell Tracking. In: Basel M., Bossmann S., eds. Cell Tracking. Methods in Molecular Biology, 2020, vol. 2126. Humana, New York, NY, 2020, pp. 33–43. https://doi.org/10.1007/978-1-0716-0364-2_4
  11. Yeo D., Wiraja C., Chuah Y. J., Gao Y., Xu C. A Nanoparticle-based Sensor Platform for Cell Tracking and Status/Function Assessment. Sci. Rep., 2015, vol. 5, article no. 14768. https://doi.org/10.1038/srep14768
  12. Lassailly F., Griessinger E., Bonnet D. “Microenvironmental contaminations” induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood, 2010, vol. 115, iss. 26, pp. 5347–5354. https://doi.org/10.1182/blood-2009-05-224030
  13. Shcherbakova D. M., Sengupta P., Lippincott-Schwartz J., Verkhusha V. V. Photocontrollable Fluorescent Proteins for Superresolution Imaging. Annu. Rev. Biophys., 2014, vol. 43, pp. 303–329. https://doi.org/10.1146/annurev-biophys-051013-022836
  14. Sattarzadeh A., Saberianfar R., Zipfel W. R., Menassa R., Hanson M. R. Green to red photoconversion of GFP for protein tracking in vivo. Sci. Rep., 2015, vol. 5, article no. 11771. https://doi.org/10.1038/srep11771
  15. Gai M., Frueh J., Kudryavtseva V. L., Yashchenok A. M., Sukhorukov G. B. Polylactic Acid Sealed Polyelectrolyte Multilayer Microchambers for Entrapment of Salts and Small Hydrophilic Molecules Precipitates. ACS Appl. Mater. Interfaces, 2017, vol. 9, iss. 19, pp. 16536–16545. https://doi.org/10.1021/acsami.7b03451
  16. Shemiakina I. I., Ermakova G. V., Cranfill P. J., Baird M. A., Evans R. A., Souslova E. A., Staroverov D. B., Gorokhovatsky A. Y., Putintseva E. V., Gorodnicheva T. V., Chepurnykh T. V., Strukova L., Lukyanov S., Zaraisky A. G., Davidson M. W., Chudakov D. M., Shcherbo D. A monomeric red fluorescent protein with low cytotoxicity. Nat. Commun., 2012, vol. 3, article no. 1204. https://doi.org/10.1038/ncomms2208
  17. Zhang L., Gurskaya N. G., Merzlyak E. M., Staroverov D. B., Mudrik N. N., Samarkina O. N., Vinokurov L. M., Lukyanov S., Lukyanov K. A. Method for real-time monitoring of protein degradation at the single cell level. Biotechniques, 2007, vol. 42, iss. 4, pp. 446–450. https://doi.org/10.2144/000112453
  18. Miyawaki A. Proteins on the move: Insights gained from fluorescent protein technologies. Nat. Rev. Mol. Cell Biol., 2011, vol. 12, pp. 656–668. https://doi.org/10.1038/nrm3199
  19. Bajpai V. K., Swigut T., Mohammed J., Naqvi S., Arreola M., Tycko J., Kim T. C., Pritchard J. K., Bassik M. C., Wysocka J. A genome-wide genetic screen uncovers determinants of human pigmentation. Science, 2023, vol. 381, article no. aede6658. https://doi.org/10.1126/science.ade6289
  20. Kopach O., Zheng K., Dong L., Sapelkin A., Voitenko N., Sukhorukov G. B., Rusakov D. A. Nanoengineered microcapsules boost the treatment of persistent pain. Drug Deliv., 2018, vol. 25, pp. 435–447. https://doi.org/10.1080/10717544.2018.1431981
  21. Sapach A. Y., Sindeeva O. A., Nesterchuk M. V., Tsitrina A. A., Mayorova O. A., Prikhozhdenko E. S., Verkhovskii R. A., Mikaelyan A. S., Kotelevtsev Y. V., Sukhorukov G. B. Macrophage In Vitro and In Vivo Tracking via Anchored Microcapsules. ACS Appl. Mater. Interfaces, 2022, vol. 14, iss. 46, pp. 51579–51592. https://doi.org/10.1021/acsami.2c12004
  22. Sukhorukov G. B., Rogach A. L., Zebli B., Liedl T., Skirtach A. G., Köhler K., Antipov A. A., Gaponik N., Susha A. S., Winterhalter M., Parak W. J. Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation. Small, 2005, vol. 1, iss. 2, pp. 194–200. https://doi.org/10.1002/smll.200400075
  23. Timin A. S., Gould D. J., Sukhorukov G. B. Multi-layer microcapsules: Fresh insights and new applications. Expert Opin. Drug Deliv., 2017, vol. 14, iss. 5, pp. 583–587. https://doi.org/10.1080/17425247.2017.1285279
  24. Harrington W. N., Novoselova M. V., Bratashov D. N., Khlebtsov B. N., Gorin D. A., Galanzha E. I., Zharov V. P. Photoswitchable Spasers with a Plasmonic Core and Photoswitchable Fluorescent Proteins. Sci. Rep., 2019, vol. 9, article no. 12439. https://doi.org/10.1038/s41598-019-48335-6
  25. Riehl M., Harms M., Göttel B., Kubas H., Schiroky D., Mäder K. Acid-induced degradation of widely used NIR dye DiR causes hypsochromic shift in fluorescence properties. Eur. J. Pharm. Sci., 2019, vol. 132, pp. 27–33. https://doi.org/10.1016/j.ejps.2019.02.031
  26. Li J., Ji A., Lei M., Xuan L., Song R., Feng X., Lin H., Chen H. Hypsochromic Shift Donor–Acceptor NIR-II Dye for High-Efficiency Tumor Imaging. J. Med. Chem., 2023, vol. 66, iss. 12, pp. 7880–7893. https://doi.org/10.1021/acs.jmedchem.3c00253
  27. Takemura K., Imato K., Ooyama Y. Mechanofluorochromism of (D–π–) 2 A-type azine-based fluorescent dyes. RSC Adv., 2022, vol. 12, pp. 13797–13809. https://doi.org/10.1039/D2RA02431D
  28. Volodkin D. V., Petrov A. I., Prevot M., Sukhorukov G. B. Matrix Polyelectrolyte Microcapsules: New System for Macromolecule Encapsulation. Langmuir, 2004, vol. 20, iss. 8, pp. 3398–3406. https://doi.org/10.1021/la036177z
  29. Evans N. A. Photofading of Rhodamine Dyes: III. The Effect of Wavelength on the Fading of Rhodamine B. Text. Res. J., 1973, vol. 43, iss. 12, pp. 697–700. https://doi.org/10.1177/004051757304301201
  30. Butkevich A. N., Bossi M. L., Lukinaviиius G., Hell S. W. Triarylmethane Fluorophores Resistant to Oxidative Photobluing. J. Am. Chem. Soc., 2019, vol. 141, iss. 2, pp. 981–989. https://doi.org/10.1021/jacs.8b11036
  31. Cassidy J. P., Tan J. A., Wustholz K. L. Probing the Aggregation and Photodegradation of Rhodamine Dyes on TiO2. J. Phys. Chem. C, 2017, vol. 121, iss. 29, pp. 15610–15618. https://doi.org/10.1021/acs.jpcc.7b04604
  32. Lee S. Y., Kang D., Jeong S., Do H. T., Kim J. H. Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega, 2020, vol. 5, iss. 8, pp. 4233–4241. https://doi.org/10.1021/acsomega.9b04127
  33. Zhou Y., Zahran E. M., Quiroga B. A., Perez J., Mintz K. J., Peng Z., Liyanage P. Y., Pandey R. R., Chusuei C. C., Leblanc R. M. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Appl. Catal. B Environ., 2019, vol. 248, pp. 157–166. https://doi.org/10.1016/j.apcatb.2019.02.019
  34. Xu N., Huang H., Ouyang H., Wang H. Preparation of the heterojunction catalyst N-doping carbon quantum dots/P25 and its visible light photocatalytic activity. Sci. Rep., 2019, vol. 9, article no. 9971. https://doi.org/10.1038/s41598-019-46277-7
  35. Phang S. J., Tan L.-L. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catal. Sci. Technol., 2019, vol. 9, pp. 5882–5905. https://doi.org/10.1039/C9CY01452G
  36. Stepukhovich М. S., Abramova A. M., Bakal A. A., Goryacheva I. Yu. Novel degradable photocatalysts for wastewater treatment. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 2, pp. 148–158 (in Russian). https://doi.org/10.18500/1816-9775-2023-23-2-148-158
  37. Chen F., Liu W., Li H., Deng T., Xing B., Liu F. Rhodamine Fluorophores for STED Super-Resolution Biological Imaging. Anal. Sens., 2022, vol. 2, iss. 3, article no. e202100066. https://doi.org/10.1002/anse.202100066
  38. Demina P. A., Sindeeva O. A., Abramova A. M., Prikhozhdenko E. S., Verkhovskii R. A., Lengert E. V., Sapelkin A. V., Goryacheva I. Y., Sukhorukov G. B. Fluorescent Convertible Capsule Coding Systems for Individual Cell Labeling and Tracking. ACS Appl. Mater. Interfaces, 2021, vol. 13, iss. 17, pp. 19701–19709. https://doi.org/10.1021/acsami.1c02767
  39. Sukhorukov G. B., Donath E., Davis S., Lichtenfeld H., Caruso F., Popov V. I., Möhwald H. Stepwise polyelectrolyte assembly on particle surfaces: A novel approach to colloid design. Polym. Adv. Technol., 1998, vol. 9, iss. 10–11, pp. 759–767. https://doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11<759::AID-PAT48>3.0.CO;2-Q
  40. An Z., Kavanoor K., Choy M. L., Kaufman L. J. Polyelectrolyte microcapsule interactions with cells in two- and three-dimensional culture. Colloids Surfaces B Biointerfaces, 2009, vol. 70, iss. 1, pp. 114–123. https://doi.org/10.1016/j.colsurfb.2008.12.022
  41. Gao H., Goriacheva O. A., Tarakina N. V., Sukhorukov G. B. Intracellularly Biodegradable Polyelectrolyte/Silica Composite Microcapsules as Carriers for Small Molecules. ACS Appl. Mater. Interfaces, 2016, vol. 8, iss. 15, pp. 9651–9661. https://doi.org/10.1021/acsami.6b01921
  42. Chen Y., Sukhorukov G. B., Novak P. Visualising nanoscale restructuring of a cellular membrane triggered by polyelectrolyte microcapsules. Nanoscale, 2018, vol. 10, pp. 16902–16910. https://doi.org/10.1039/C8NR03870H
  43. Brueckner M., Jankuhn S., Jülke E.-M., Reibetanz U. Cellular interaction of a layer-by-layer based drug delivery system depending on material properties and cell types. Int. J. Nanomedicine, 2018, vol. 13, pp. 2079–2091. https://doi.org/10.2147/IJN.S153701
  44. Madkhali N., Alqahtani H. R., Al-Terary S., Laref A., Hassib A. Control of optical absorption and fluorescence spectroscopies of natural melanin at different solution concentrations. Opt. Quantum Electron., 2019, vol. 51, article no. 227. https://doi.org/10.1007/s11082-019-1936-3
Received: 
30.11.2023
Accepted: 
20.12.2023
Published: 
01.03.2024