Для цитирования:
Демина П. А., Кожевников И. О., Абрамова А. М., Горячева И. Ю. Оптическая маркировка индивидуальных клеток меланомы с использованием фотоконвертируемых микрочастиц // Известия Саратовского университета. Новая серия. Серия: Физика. 2024. Т. 24, вып. 1. С. 30-40. DOI: 10.18500/1817-3020-2024-24-1-30-40, EDN: CNJXOT
Оптическая маркировка индивидуальных клеток меланомы с использованием фотоконвертируемых микрочастиц
Фотоконвертируемые маркеры – полезный подход для проведения комплексных фундаментальных и прикладных исследований в медицине и биологии. Обычно используют фотоконвертируемые белки или красители, но они имеют ряд недостатков(низкая стабильность, необходимость генетической модификации и т. д.). Целью этого исследования была разработка безопасных и стабильных фотоконвертируемых маркеров для применения на клетках. Полимерные маркеры получали из полиэлектролитных микрокапсул методом гидротермального синтеза с флуоресцентным красителем родамином Б. Спектральные свойства изучали методами конфокальной микроскопии и спектрометрии. Фотоконверсия микрочастиц под действием лазерного излучения осуществлялась за счёт способности молекул родамина Б к гипсохромному сдвигу полосы излучения, катализируемому углеродными структурами, образующимися в оболочках микрочастиц во время гидротермального синтеза. Гидротермальный синтез, в свою очередь, существенно изменял размер и форму микрочастиц. Термообработанные полиэлектролитные микрочастицы обладали высокой стабильностью и ярким флуоресцентном сигналом относительно используемых клеточных красителей. Микрочастицы активно захватывались клетками линии мышиной меланомы B16F10, обеспечивая маркировку 70% всех клеток в популяции при соотношении 10 микрочастиц на клетку. При этом метаболическая активность не падала ниже 85%, а морфология и способность клеток B16F10 к синтезу меланина оставалась в пределах нормы. Было показано, что микрочастицы могут быть безопасно фотоконвертированы внутри клеток B16F10 под действием лазерного излучения. Предложенная стратегия полезна для комплексных исследований поведения отдельных раковых клеток меланомы в генетически и фенотипически гетерогенных популяциях, а также для изучения процесса метастазирования.
- Konen J., Summerbell E., Dwivedi B., Galior K., Hou Y., Rusnak L., Chen A., Saltz J., Zhou W., Boise L. H., Vertino P., Cooper L., Salaita K., Kowalski J., Marcus A. I. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun., 2017, vol. 8, article no. 15078. https://doi.org/10.1038/ncomms15078
- Caires H. R., Gomez-Lazaro M., Oliveira C. M., Gomes D., Mateus D. D., Oliveira C., Barrias C. C., Barbosa M. A., Almeida C. R. Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2. Sci. Rep., 2015, vol. 5, article no. 10079. https://doi.org/10.1038/srep10079
- Adam V., Berardozzi R., Byrdin M., Bourgeois D. Phototransformable Fluorescent Proteins: Future Challenges. Curr. Opin. Chem. Biol., 2014, vol. 20, pp. 92–102. https://doi.org/10.1016/j.cbpa.2014.05.016
- Pletnev S., Shcherbakova D. M., Subach O. M., Pletneva N. V., Malashkevich V. N., Almo S. C., Dauter Z., Verkhusha V. V. Orange Fluorescent Proteins: Structural Studies of LSSmOrange, PSmOrange and PSmOrange2. PLoS ONE, 2014, vol. 9, article no. e99136. https://doi.org/10.1371/journal.pone.0099136
- Terskikh A., Fradkov A., Ermakova G., Zaraisky A., Tan P., Kajava A. V., Zhao X., Lukyanov S., Matz M., Kim S., Weissrnan I., Siebert P. “Fluorescent Timer”: Protein That Changes Color with Time. Science, 2000, vol. 290, article no. 1585. https://doi.org/10.1126/science.290.5496.1585
- Wachter R. M., Watkins J. L., Kim H. Mechanistic Diversity of Red Fluorescence Acquisition by GFP-like Proteins. Biochemistry, 2010, vol. 49, iss. 35, pp. 7417–7427. https://doi.org/10.1021/bi100901h
- Pellois J.-P., Hahn M. E., Muir T. W. Simultaneous Triggering of Protein Activity and Fluorescence. J. Am. Chem. Soc., 2004, vol. 126, pp. 7170–7171. https://doi.org/10.1038/srep10079
- Johansson M. K., Cook R. M. Intramolecular Dimers: A New Design Strategy for Fluorescence-Quenched Probes. Chem A Eur. J., 2003, vol. 9, iss. 15, pp. 3466–3471. https://doi.org/10.1002/chem.200304941
- Carlson A. L., Fujisaki J., Wu J., Runnels J. M., Turcotte R., Celso C. Lo, Scadden D. T., Strom T. B., Lin C. P. Tracking Single Cells in Live Animals Using a Photoconvertible Near-Infrared Cell Membrane Label. PLoS ONE, 2013, vol. 8, article no. e69257. https://doi.org/10.1371/journal.pone.0069257
- Basel M. T. Lipophilic Near-Infrared Dyes for In Vivo Fluorescent Cell Tracking. In: Basel M., Bossmann S., eds. Cell Tracking. Methods in Molecular Biology, 2020, vol. 2126. Humana, New York, NY, 2020, pp. 33–43. https://doi.org/10.1007/978-1-0716-0364-2_4
- Yeo D., Wiraja C., Chuah Y. J., Gao Y., Xu C. A Nanoparticle-based Sensor Platform for Cell Tracking and Status/Function Assessment. Sci. Rep., 2015, vol. 5, article no. 14768. https://doi.org/10.1038/srep14768
- Lassailly F., Griessinger E., Bonnet D. “Microenvironmental contaminations” induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood, 2010, vol. 115, iss. 26, pp. 5347–5354. https://doi.org/10.1182/blood-2009-05-224030
- Shcherbakova D. M., Sengupta P., Lippincott-Schwartz J., Verkhusha V. V. Photocontrollable Fluorescent Proteins for Superresolution Imaging. Annu. Rev. Biophys., 2014, vol. 43, pp. 303–329. https://doi.org/10.1146/annurev-biophys-051013-022836
- Sattarzadeh A., Saberianfar R., Zipfel W. R., Menassa R., Hanson M. R. Green to red photoconversion of GFP for protein tracking in vivo. Sci. Rep., 2015, vol. 5, article no. 11771. https://doi.org/10.1038/srep11771
- Gai M., Frueh J., Kudryavtseva V. L., Yashchenok A. M., Sukhorukov G. B. Polylactic Acid Sealed Polyelectrolyte Multilayer Microchambers for Entrapment of Salts and Small Hydrophilic Molecules Precipitates. ACS Appl. Mater. Interfaces, 2017, vol. 9, iss. 19, pp. 16536–16545. https://doi.org/10.1021/acsami.7b03451
- Shemiakina I. I., Ermakova G. V., Cranfill P. J., Baird M. A., Evans R. A., Souslova E. A., Staroverov D. B., Gorokhovatsky A. Y., Putintseva E. V., Gorodnicheva T. V., Chepurnykh T. V., Strukova L., Lukyanov S., Zaraisky A. G., Davidson M. W., Chudakov D. M., Shcherbo D. A monomeric red fluorescent protein with low cytotoxicity. Nat. Commun., 2012, vol. 3, article no. 1204. https://doi.org/10.1038/ncomms2208
- Zhang L., Gurskaya N. G., Merzlyak E. M., Staroverov D. B., Mudrik N. N., Samarkina O. N., Vinokurov L. M., Lukyanov S., Lukyanov K. A. Method for real-time monitoring of protein degradation at the single cell level. Biotechniques, 2007, vol. 42, iss. 4, pp. 446–450. https://doi.org/10.2144/000112453
- Miyawaki A. Proteins on the move: Insights gained from fluorescent protein technologies. Nat. Rev. Mol. Cell Biol., 2011, vol. 12, pp. 656–668. https://doi.org/10.1038/nrm3199
- Bajpai V. K., Swigut T., Mohammed J., Naqvi S., Arreola M., Tycko J., Kim T. C., Pritchard J. K., Bassik M. C., Wysocka J. A genome-wide genetic screen uncovers determinants of human pigmentation. Science, 2023, vol. 381, article no. aede6658. https://doi.org/10.1126/science.ade6289
- Kopach O., Zheng K., Dong L., Sapelkin A., Voitenko N., Sukhorukov G. B., Rusakov D. A. Nanoengineered microcapsules boost the treatment of persistent pain. Drug Deliv., 2018, vol. 25, pp. 435–447. https://doi.org/10.1080/10717544.2018.1431981
- Sapach A. Y., Sindeeva O. A., Nesterchuk M. V., Tsitrina A. A., Mayorova O. A., Prikhozhdenko E. S., Verkhovskii R. A., Mikaelyan A. S., Kotelevtsev Y. V., Sukhorukov G. B. Macrophage In Vitro and In Vivo Tracking via Anchored Microcapsules. ACS Appl. Mater. Interfaces, 2022, vol. 14, iss. 46, pp. 51579–51592. https://doi.org/10.1021/acsami.2c12004
- Sukhorukov G. B., Rogach A. L., Zebli B., Liedl T., Skirtach A. G., Köhler K., Antipov A. A., Gaponik N., Susha A. S., Winterhalter M., Parak W. J. Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation. Small, 2005, vol. 1, iss. 2, pp. 194–200. https://doi.org/10.1002/smll.200400075
- Timin A. S., Gould D. J., Sukhorukov G. B. Multi-layer microcapsules: Fresh insights and new applications. Expert Opin. Drug Deliv., 2017, vol. 14, iss. 5, pp. 583–587. https://doi.org/10.1080/17425247.2017.1285279
- Harrington W. N., Novoselova M. V., Bratashov D. N., Khlebtsov B. N., Gorin D. A., Galanzha E. I., Zharov V. P. Photoswitchable Spasers with a Plasmonic Core and Photoswitchable Fluorescent Proteins. Sci. Rep., 2019, vol. 9, article no. 12439. https://doi.org/10.1038/s41598-019-48335-6
- Riehl M., Harms M., Göttel B., Kubas H., Schiroky D., Mäder K. Acid-induced degradation of widely used NIR dye DiR causes hypsochromic shift in fluorescence properties. Eur. J. Pharm. Sci., 2019, vol. 132, pp. 27–33. https://doi.org/10.1016/j.ejps.2019.02.031
- Li J., Ji A., Lei M., Xuan L., Song R., Feng X., Lin H., Chen H. Hypsochromic Shift Donor–Acceptor NIR-II Dye for High-Efficiency Tumor Imaging. J. Med. Chem., 2023, vol. 66, iss. 12, pp. 7880–7893. https://doi.org/10.1021/acs.jmedchem.3c00253
- Takemura K., Imato K., Ooyama Y. Mechanofluorochromism of (D–π–) 2 A-type azine-based fluorescent dyes. RSC Adv., 2022, vol. 12, pp. 13797–13809. https://doi.org/10.1039/D2RA02431D
- Volodkin D. V., Petrov A. I., Prevot M., Sukhorukov G. B. Matrix Polyelectrolyte Microcapsules: New System for Macromolecule Encapsulation. Langmuir, 2004, vol. 20, iss. 8, pp. 3398–3406. https://doi.org/10.1021/la036177z
- Evans N. A. Photofading of Rhodamine Dyes: III. The Effect of Wavelength on the Fading of Rhodamine B. Text. Res. J., 1973, vol. 43, iss. 12, pp. 697–700. https://doi.org/10.1177/004051757304301201
- Butkevich A. N., Bossi M. L., Lukinaviиius G., Hell S. W. Triarylmethane Fluorophores Resistant to Oxidative Photobluing. J. Am. Chem. Soc., 2019, vol. 141, iss. 2, pp. 981–989. https://doi.org/10.1021/jacs.8b11036
- Cassidy J. P., Tan J. A., Wustholz K. L. Probing the Aggregation and Photodegradation of Rhodamine Dyes on TiO2. J. Phys. Chem. C, 2017, vol. 121, iss. 29, pp. 15610–15618. https://doi.org/10.1021/acs.jpcc.7b04604
- Lee S. Y., Kang D., Jeong S., Do H. T., Kim J. H. Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega, 2020, vol. 5, iss. 8, pp. 4233–4241. https://doi.org/10.1021/acsomega.9b04127
- Zhou Y., Zahran E. M., Quiroga B. A., Perez J., Mintz K. J., Peng Z., Liyanage P. Y., Pandey R. R., Chusuei C. C., Leblanc R. M. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Appl. Catal. B Environ., 2019, vol. 248, pp. 157–166. https://doi.org/10.1016/j.apcatb.2019.02.019
- Xu N., Huang H., Ouyang H., Wang H. Preparation of the heterojunction catalyst N-doping carbon quantum dots/P25 and its visible light photocatalytic activity. Sci. Rep., 2019, vol. 9, article no. 9971. https://doi.org/10.1038/s41598-019-46277-7
- Phang S. J., Tan L.-L. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catal. Sci. Technol., 2019, vol. 9, pp. 5882–5905. https://doi.org/10.1039/C9CY01452G
- Stepukhovich М. S., Abramova A. M., Bakal A. A., Goryacheva I. Yu. Novel degradable photocatalysts for wastewater treatment. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 2, pp. 148–158 (in Russian). https://doi.org/10.18500/1816-9775-2023-23-2-148-158
- Chen F., Liu W., Li H., Deng T., Xing B., Liu F. Rhodamine Fluorophores for STED Super-Resolution Biological Imaging. Anal. Sens., 2022, vol. 2, iss. 3, article no. e202100066. https://doi.org/10.1002/anse.202100066
- Demina P. A., Sindeeva O. A., Abramova A. M., Prikhozhdenko E. S., Verkhovskii R. A., Lengert E. V., Sapelkin A. V., Goryacheva I. Y., Sukhorukov G. B. Fluorescent Convertible Capsule Coding Systems for Individual Cell Labeling and Tracking. ACS Appl. Mater. Interfaces, 2021, vol. 13, iss. 17, pp. 19701–19709. https://doi.org/10.1021/acsami.1c02767
- Sukhorukov G. B., Donath E., Davis S., Lichtenfeld H., Caruso F., Popov V. I., Möhwald H. Stepwise polyelectrolyte assembly on particle surfaces: A novel approach to colloid design. Polym. Adv. Technol., 1998, vol. 9, iss. 10–11, pp. 759–767. https://doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11<759::AID-PAT48>3.0.CO;2-Q
- An Z., Kavanoor K., Choy M. L., Kaufman L. J. Polyelectrolyte microcapsule interactions with cells in two- and three-dimensional culture. Colloids Surfaces B Biointerfaces, 2009, vol. 70, iss. 1, pp. 114–123. https://doi.org/10.1016/j.colsurfb.2008.12.022
- Gao H., Goriacheva O. A., Tarakina N. V., Sukhorukov G. B. Intracellularly Biodegradable Polyelectrolyte/Silica Composite Microcapsules as Carriers for Small Molecules. ACS Appl. Mater. Interfaces, 2016, vol. 8, iss. 15, pp. 9651–9661. https://doi.org/10.1021/acsami.6b01921
- Chen Y., Sukhorukov G. B., Novak P. Visualising nanoscale restructuring of a cellular membrane triggered by polyelectrolyte microcapsules. Nanoscale, 2018, vol. 10, pp. 16902–16910. https://doi.org/10.1039/C8NR03870H
- Brueckner M., Jankuhn S., Jülke E.-M., Reibetanz U. Cellular interaction of a layer-by-layer based drug delivery system depending on material properties and cell types. Int. J. Nanomedicine, 2018, vol. 13, pp. 2079–2091. https://doi.org/10.2147/IJN.S153701
- Madkhali N., Alqahtani H. R., Al-Terary S., Laref A., Hassib A. Control of optical absorption and fluorescence spectroscopies of natural melanin at different solution concentrations. Opt. Quantum Electron., 2019, vol. 51, article no. 227. https://doi.org/10.1007/s11082-019-1936-3
- 561 просмотр