Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Proskurin S. G., Kuskova N. A., Avsievich T. I. Optical Doppler Methods for the Measurements of Flow Velocities of Biological Liquids. Izvestiya of Saratov University. Physics , 2017, vol. 17, iss. 4, pp. 269-280. DOI: 10.18500/1817-3020-2017-17-4-269-280

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 217)
535.361.2; 576.321

Optical Doppler Methods for the Measurements of Flow Velocities of Biological Liquids

Proskurin Sergei Gennad'evich, Tambov State Technical University
Kuskova Nadezhda Alekseevna, Tambov State Technical University
Avsievich Tat'iana Igorevna, Tambov State Technical University

Background and Objectives: In this paper the key results obtained by the authors during the years of development of Doppler optical methods for quasi-elastic light scattering and coherence gating on biomedical liquids are presented. The research is focused on the sign sensitive velocity measurement and quantitative visualization of alternating and complex geometry flows using spectral approach to digital data processing of Doppler shift of the carrier frequency. Materials and Methods: Laser Doppler microscopy allows accurate sign-sensitive measurement of the endoplasm stream velocity in the isolated strand of Physarum polycephalum. An algorithm of color Doppler mapping of multidirectional flows (vessel phantom) is developed to automatically decompose the original data into two parts corresponding to a positive and negative shift of the carrier frequency with forming up the structural image and two OSV (One Specific Velocity) ones followed by color coding and a final complexation. Results: The model based on the spectral characteristics adequately describes the change of the velocity time dependencies of the endoplasmic motility. The OSV Doppler mapping allows for the construction of structural Doppler images of biological fluids. They clearly visualize and reflect the functional state of the biological object. Conclusion: The methods of quasi-elastic light scattering, optical coherence tomography (OCT) and Doppler OCT have been developed for the direction-sensitive velocity measurements and OSV mapping of biomedical liquids, based on the automated sign-sensitive registration of the carrier and Doppler shifts. Velocity measurements and color mapping of the alternating flows of the liquids in vitro and in vivo are presented.


1. Priezzhev A. V., Proskurin S. G. Laser Doppler Velocimetry: in vitro and in vivo measurements of biological fl uid fl ows in restricted volumes. Proc. of SPIE, 1992, vol. 1553, pp. 502–514.

2. Priezzhev A. V., Proskurin S. G., Romanovsky Yu. M. Laser Doppler measurements of amoeboid cytoplasmic streaming and problems of mathematical modeling of intracellular hydrodynamics. Proc. of SPIE, 1991, vol. 1402, pp. 107–113. 

3. Sokolova I. A., Shahnazarov A. A., Timkina M. I., Polyakova M. S., Proskurin S. G., Priezzhev A. V. Can blood fl ow properties have pronounced infl uence on microvessel resistance? Biorheology, 1995, vol. 32, no. 2, p. 286. 

4. Polyakova M. S., Sokolova I. A., Priezzhev A. V., Proskurin S. G., Shakhnazarov A. A., Savchenko N. B. Blood fl ow velocity measurements in rat mesentery arterioles in health and under hypertensive conditions. Proc. of SPIE, 1994, vol. 2136, pp. 63–68. 

5. Romanovskii Yu. M., Teplov V. A. The physical bases of cell movement. The mechanisms of self-organisation of amoeboid motility. Phys. Usp., 1995, vol. 38, pp. 521–542. 

6. Frolov S. V., Sindeev S. V., Liepsch D., Balasso A., Proskurin S. G., Potlov A. Yu. Model studies of blood fl ow in basilar artery with 3D Laser Doppler Anemometer. Proc. of SPIE, 2015, vol. 9448, pp. 9448081–9448086. 

7. Kamiya N. Physical and chemical basis of cytoplasmic streaming. Annu. Rev. Plant Physiol., 1981, vol. 32, pp. 205–236. 

8. Block I., Wohlfarth-Bottermann K. E. Blue light as a medium to infl uence oscillatory contraction frequency in Physarum. Cell Biol. Int. Rep., 1981, vol. 5. pp. 73–81. 

9. Proskurin S. G., Avsievich T. I. Spectral analysis of self-oscillating motility in an isolated plasmodial strand of Physarum polycephalum. Biophysics, 2014, vol. 59, iss. 6, pp. 928–934. 

10. Avsievich T. I., Ghaleb K.E.S, Frolov S. V., Proskurin S. G. Endoplasmic motility spectral characteristics in plasmodium of Physarum Polycephalum. Proc. of SPIE, 2015, vol. 9448, pp. 94480H1–94480H7. 

11. Avsievich T. I., Frolov S. V., Proskurin S. G. Characterization of endoplasmic streaming in Physarum polycephalum using direction sensitive laser Doppler microscopy. Optical and Quantum Electronics, 2016, vol. 48, no. 102, pp. 1–10. 

12. Nagai R., Kato T. Cytoplasmic fi laments and their assembly into bundles in physarum plasmodium. Protoplasma, 1975, vol. 86, pp. 141–158. 

13. Landau L. D., Lifshitz E. M. Fluid Mechanics. Course of Theoretical Physics : in 6 vol. 2nd ed. Oxford, UK, Pergamon Press, 1987, vol. 6. 532 p. 

14. Firmin D. N., Nayler G. I., Klipstein R. H., Underwood S. R., Rees, R. S., Longmore D. B. In vivo validation of MR velocity imaging. J. Comput. Assist. Tomogr., 1987, vol. 11, iss. 5, pp. 751–756. 

15. Ashworth J.M., Dee J. The biology of slime moulds. London, UK, Edward Arnold Ltd., 1975. 67 p. 

16. Nichols W. W., O’Rourke M. F., McDonald R. McDonald’s blood fl ow in arteries. 3rd ed. London, UK, Edward Arnold Ltd., 1990, 456 p. 

17. Bishko G. B., Harlen O. G., McLeish T.C.B., Nicholson T. M Numerical simulation of the transient fl ow of branched polymer melts through a planar contraction using the “pom-pom” model. Journal of Non-newtonian Fluid Mechanics, 1999, vol. 82, iss. 2–3, pp. 255–273. 

18. Horrobin D. J., Nedderman R. M. Die entry pressure drops in paste extrusion. Chemical Engineering Science, 1998, vol. 53, iss. 18, pp. 3215–3125. 

19. Kilner P. J., Yang G. Z., Wilkes A. J., Mohiaddin R. H., Firmin D. N., Yacoub M. H Asymmetric redirection of flow through the heart. Nature, 2000, vol. 404, pp. 759–761. 

20. Shirakashi M., Takahashi T., Watanabe A., Aruga Y. Start-up behavior of viscoelastic fl id fl ow near a capillary entry. Ann. N.Y. Acad. Sci., 2002, vol. 972, pp. 81–87. 

21. Nakagaki T., Kobayashi R., Nishiura Y., Ueda T. Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proc. Roy. Soc., 2004, vol. 271, iss. 1554, pp. 2305–2310. 

22. Nakagaki T., Guy R. D. Intelligent behaviors of amoeboid movement based on complex dynamics of soft matter. Soft Matter, 2008, vol. 4, iss. 1, pp. 57–67. 

23. Joanny J. F., Prost J. Active gels as a description of the actin-myosin cytoskeleton. HFSP J., 2009, vol. 3, iss. 2, pp. 94–104. 

24. Guy R. D., Nakagaki T., Wright G. B. Flow-induced channel formation in the cytoplasm of motile cells. Phys. Rev. E., 2011, vol. 84, pp. 016310. 

25. De Lacy C. B., Adamatzky A. Assessing the chemotaxis behavior of Physarum Polycephalum to a range of simple volatile organic chemicals. Communicative and Intergrative Biology, 2013, vol. 6, iss. 5, pp. e25030. 

26. Avsievich T. I., Frolov S. V., Proskurin S. G. Spectral characteristics of shuttle self-oscillating endoplasmic motility in slime mold plasmodium. Optics and Spectroscopy, 2016, vol. 120, iss. 1, pp. 70–75. 

27. Mustacich R. V., Ware B. R. Observation of protoplasmic streaming by laser-light scattering. Phys. Rev. Lett., 1974, vol. 33, iss. 11, pp. 617–620. 

28. Mustacich R. V., Ware B. R. Velocity distributions of the streaming protoplasm in Nitella fl exilis. Biophys. J., 1977, vol. 17, iss. 3, pp. 229–241.

29. Durst F., Melling A., James H. Whitelaw. Principles and Practice of Laser-Doppler Anemometry. London, UK, Academic Press, 1976. 405 p. 

30. Poroshina M. Iu., Priezzhev A. V., Romanovskii Iu. M. Foto-retseptsiia i avtokolobatel’naia podvizhnost’ zhivoi kletki [Photo-reception and auto-oscillatory mobility of a living cell]. Biofi zika, 1989, vol. 34, iss. 6, pp. 980–984 (in Russian). 

31. Teplov V. A., Mitrofanov V. V., Romanovskii Iu. M. Synchronization of mechanochemical auto-oscillations within the Physarum polycephalum plasmodium by periodical external actions. Biophysics, 2005, vol. 50, no. 4, pp. 618–626. 

32. Avsievich T. I., Frolov S. V., Proskurin S. G. The effect of inhibitors of cellular respiration on self-oscillating motility in plasmodium Physarum polycephalum. Biophysics, 2016, vol. 61, iss. 1, pp. 59–66. 

33. Sokolova I. A., Shakhnazarov A. A., Timkina M. I., Poliakova M. S., Priezzhev A. V., Prockurin S. G., Savchenko N. B., Bikulova K. F. Umen’shenie gemodinamicheskogo soprotivleniia v arteriolakh bryzheiki krysy posle vvedeniia polietilen oksida Polyox WSR-301 [Reduction of hemodynamic resistance in rat mesentery arterioles after administration of polyethylene oxide Polyox WSR-301]. Biulleten‘ eksperimental‘noi biologii i meditsiny, 1993, no. 11, pp. 552–555 (in Russian). 

34. Fisher Y. L., Nogueira F., Salles D. Diagnostic ophthalmic ultrasonography. In: Duane’s Foundations of Clinical Ophthalmology. 15th ed. Eds. W. Tasman, E. A. Jaeger. Philadelphia, Pa: Lippincott Williams & Wilkins, 2009, chap. 108. 

35. Ouriev B., Windhab E. Novel ultrasound based time averaged fl ow mapping method for die entry visualisation in fl ow of highly concentrated shear-thinning and shearthickenning suspentions. Measurement Science and Technology, 2003, vol. 14, iss. 1, pp. 140–147. 

36. Rychagov M. N., Ruchkin S. V., Tereshchenko S. A., Podgaetsky V. M., Selishchev S.V. Imaging of fl uid fl ow by tomographic reconstruction using enhanced multipath ultrasonic measurements. Proc. of IEEE Ultrasonic Simposium. Honolulu, HI, USA, 2003, pp. 803–806. 

37. Proskurin S. G., He Y., Wang R. K. Doppler optical coherence imaging of converging fl ow. Physics in Medicine and Biology, 2004, vol. 49, iss. 7, pp. 1265–1276. 

38. Proskurin S. G. Doplerovskaia mikroskopiia znakoperemennykh nestatsionarnykh potokov v zhivykh ob”ektakh: Dis. kand. fi z.-mat. nauk [Doppler microscopy of alternating non-stationary fl ows in living objects]. Moscow, 1993. 110 p. (in Russian). 

39. Teplov V. A., Beilina M. V., Evdokimov S. I., Priezzhev A. V., Romanovskii Iu. M. Avtovolnovye mekhanizmy vnutrikletochnoi podvizhnosti [Autowave mechanisms of intracellular mobility]. In: Avtovolnovye protsessy v sistemakh s diffuziei [Autowave processes in systems with diffusion]. Pod red. M. T. Grekhova, Institut prikladnoi fiziki AN SSSR. Gor’kii, 1981, pp. 190–201 (in Russian). 

40. Ueda T., Matsumoto K., Akitaya T., Kobatake Y. Spatial and temporal organization of intracellular adenosine nucleotide and cyclic nucleotides in relation to rhythmic motility in Physarum polycephalum. Exp. Cell Res., 1986, vol. 162, iss. 2, pp. 486–494. 

41. Mazur A., Teplov V. A. Surface oscillations in Physarum Polycephalum – computer simulation and comparison with the local infl uence of the respiratory inhibitors. Acta Protozoologica, 1991, vol. 30, iss. 2, pp. 87–92. 

42. Hoang H.T.K., Akihiro N., Sakae A. Effects of KCN, SHAM and oxygen concentrations on respiratory properties of purifi ed mitochondria isolated from ananascomosus (pineapple) and kalanchoeedaigremontiana. Plant Prod. Sci., 2005, vol. 8, iss. 4, pp. 383–392. 

43. Brooksby B., Jiang S., Dehghani H., Pogue B. W., Paulsen K. D., Weaver J., Kogel C., Poplack S. P. Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incor-porate magnetic resonance structure. J. Biomed. Opt., 2005, vol. 10, iss. 5, p. 051504. 

44. Proskurin S. G., Wang R. K. One specifi c velocity visualization in fl ows with complex geometry. Proc. of SPIE, 2005, vol. 5696, pp. 129–135.

Краткое содержание:
(downloads: 154)