Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Navolokin N. A., Matveeva O. V., Maslyakova G. N., Bucharskaya A. B., Suleymanova L. V., Kun S. M., Medvedev B. A., Ignatiev A. A., Bochkaryeva Т. V. Morphological Changes in the Internal Organs of Laboratory Animals under a Single Administration of Fe Nanoparticles. Izvestiya of Saratov University. Physics , 2011, vol. 11, iss. 2, pp. 62-66. DOI: 10.18500/1817-3020-2011-11-2-62-66

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 124)
Language: 
Russian
Heading: 
UDC: 
537.622.4:57.085:591.4:599.323.4:576.6;576.33:577.29:615

Morphological Changes in the Internal Organs of Laboratory Animals under a Single Administration of Fe Nanoparticles

Autors: 
Navolokin Nikita Aleksandrovich, Saratov State Medical University named after V. I. Razumovsky
Matveeva Olga Viktorovna, Saratov State University
Maslyakova Galina Nikiforovna, Saratov State Medical University named after V. I. Razumovsky
Bucharskaya Alla Borisovna, Saratov State Medical University named after V. I. Razumovsky
Suleymanova Leila Vakhidovna, Saratov State Medical University named after V. I. Razumovsky
Kun Syan Miao, Saratov State Medical University named after V. I. Razumovsky
Medvedev Boris Abramovich, Saratov State University
Ignatiev Alexander Anatol'evich, Saratov State Medical University named after V. I. Razumovsky
Bochkaryeva Тat'jana Vladimirovna, Saratov State University
Abstract: 

The cytotoxic effect of iron nanoparticles of size of 70 nm was studied in an experiment with single intramuscular and oral administration in albino mice and rats. Morphological changes were assessed in the internal organs, brain and the injection site. Studies had shown that intramuscular changes are more pronounced than when nanoparticles were administered orally and were shown in signs of cell damage while after the oral administration the blood flow changes in vessels were noted.

Reference: 
  1.  Losic D., Rosengarten G., Mitchell J. G., Voelcker N. H. Pore architecture of diatom frustules : potential nanostructured membranes for molecular and particle separations // J. Nanosci. Nanotechnol. 2006. Vol. 6. P. 982–989.
  2. Nobuto H., Sugita T., Kubo T., Shimose S., Yasunaga Y., Murakami T., Ochi M. Evaluation of Systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet // J. Cancer. 2004. Vol. 109. P. 627–635.
  3. Chekhun V. F., Todor I. N., Lukyanova N. Y., Shpyleva S. I., Naleskina L. A., Khaetsky I. K., Kulik G. I. The use of nanoferromagnetics to increase the cytotoxic effect of antitumor drugs // Experimental Oncology. 2009. Vol. 31, № 3. P. 163–167.
  4. Darton N. J., Hallmark B., Han X., Palit S., Slater N. K., Mackley M. R. The in-fl ow capture of superparamagnetic nanoparticles for targeting therapeutics // Nanomedicine : Nanotechnology, Biology and Medicine. 2008. Vol. 4, № 1. P. 19–29.
  5. Fernandez-Pacheco R., Marquina C., Valdivia J. G., Ibarra M. R. Magnetic nanoparticles for local drug delivery using magnetic implants // J. Magn. Magn. Mater. 2007. Vol. 311, № 1. P. 318–322.
  6. Greulich C., Kittler S., Epple M., Muhr G., Köller M. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs) // Langenbecks Arch. Surg. 2009. Vol. 394, № 3. P. 495–502.
  7. Hergt R., Dutz S., Müller R., Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy // J. Phys. Condens. Matter. 2006. № 18. P. 2919–2934.
  8. Lu J., Liong M., Zink J. I., Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs // Small. 2007. Vol. 3, № 8. P. 1341–1346.
  9. Kentsch J., Durr M., Schnelle T., Gradl G., Muller T., Jager M., Normann A., Stelzle M. Microdevices for separation, accumulation and analysis of biological micro- and nanoparticles // IEE Proc. Nanobiotechnol. 2003. Vol. 150, № 3. P. 82–89.
  10. Arruebo M., Galan M., Navascues N., Téllez C., Marquina C., Ibarra M. R., Santamaria J. Development of magnetic nanostructured silica-based materials as potential vector for drug-delivery application // Chem. Materials. 2006. Vol. 18, № 7. P. 1911–1919.
  11. Васюков Г. Ю. Морфология жизненно важных органов крыс при внутривенном введении магнитолипосом // Вестн. рос. гос. мед ун-та. 2011. Вып. 1. С. 220–221.
  12. Potter A. J., Gollahon K. A., Palanca B. J. A., Harbert M. J., Choi Y. M., Moskovitz A. N., Potter J. D., Rabinovitch P. S. Flow cytometric analysis of the cell cycle phase specifi city of DNA damage induced by radiation, hydrogen peroxide and doxorubicin // Carcinogenesis. 2002. Vol. 23. P. 389–401.
  13. Neugebauer S., Muller U., Lochmuller T., Spatz J. P, Stelzle M., Schuhmann W. Characterization of nanopore electrode structures as basis for amplifi ed electrochemical assays // Electroanalysis. 2006. Vol. 18. P. 1929– 1936.
  14. Абакумов М. А., Сандилова Т. О., Гольдт А. Е., Юсубалиева Г. М. Магнитные биосовместимые наночастицы оксида железа для МРТ-диагностики // Вестн. рос. гос. мед. ун-та. 2011. Вып. 1. С. 227–228.
  15. Антипов С. А., Дамбаев Г. Ц., Ермаков А. Е., Федучак Т. А., Уймин М. А. Экспериментальное обоснование применения магнитоуправляемых липосомальных композитов в противоопухолевом лечении // Рос. биотерапевт. журн. 2009. Т. 8, № 1. С. 4.
  16. Быков И. В., Акопджанов А. Г. Влияние наночастиц оксида железа на жизнеспособность клеток челове ка и животных // Вестн. рос. гос. мед. ун-та. 2011. Вып. 1. С. 228–229.
  17. Галанов А. И., Юрмазова Т. А., Савельев Г. Г. и др. Разработка магнитоуправляемой системы для доставки хими-опрепаратов на основе наноразмерных частиц железа // Сиб. онкол. журн. 2008. № 3. С. 50–57.
  18. Мильто И. В., Михайлов Г. А., Ратькин А. В., Магаева А. А. Влияние наноразмерных частиц на морфологию внутренних органов мыши при внутривенном введении раствора нанопорошка Fe3О4 // Бюл. сиб. медицины. 2008. Вып. 1. С. 32–36.