Cite this article as:

Belikov A. V., Skrypnik A. V., Antropova M. М. Monte Carlo Simulation of Laser Radiation Propagation in the Multilayers Model of Head and Brain Tissues in Health and in the Presence of Intracranial Hematoma. Izvestiya of Saratov University. New series. Series Physics, 2017, vol. 17, iss. 3, pp. 158-170. DOI: https://doi.org/10.18500/1817-3020-2017-17-3-158-170


UDC: 
535.36
Language: 
Russian

Monte Carlo Simulation of Laser Radiation Propagation in the Multilayers Model of Head and Brain Tissues in Health and in the Presence of Intracranial Hematoma

Abstract

Background and Objectives: Development of new optical methods of non-contact express diagnostics of intracranial hematoma remains an actual task. The development of optical model of the head in norm and in the presence of intracranial hematoma is the aim of the present study. Influence of the dimensions of the head tissues with and without hematoma on distribution of the backscattered laser radiation intensity is discussed.

Materials and Methods: The optical model of the head and brain tissues in norm and in the presence of intracranial hematoma is developed. The computer simulations (Monte Carlo method) of the laser radiation propagation (wavelengths of 0.730 μm, 0.805 μm and 0.980 μm) were performed with the help of the developed model.

Results: In case of hematoma the “ring” structure of the backscattered laser radiation intensity distribution is observed on the surface of the scalp. The influence of the skin thickness of the head (scalp), skull thickness and hematoma thickness on the difference in the power for backscattered laser radiation on the surface of the scalp in health and in the presence of hematoma is discussed. It is shown that this difference is maximal at the wavelength of laser radiation equal to 0.805 μm. The smaller thickness of the scalp and the bones of the skull the greater this difference. It is shown that this difference is maximal at the wavelength of laser radiation of 0.805 μm. The smaller the thickness of the skin of the head (scalp) and the bones of the skull the greater this difference.

Conclusion: It was established that difference in the power of backscattered laser radiation on the surface of the scalp in health and in the presence of hematoma increases nonlinearly while increasing of the hematoma thickness.

References

1. Shilkin V. V. Anatomiia po Pirogovu. Atlas anatomii cheloveka [Anatomy by Pirogov. Atlas of human anatomy]. Moscow, Medicine, 2013. 724 p. (in Russian).

2. Sapin M. R. Anatomiia cheloveka [Human Anatomy]. Moscow, Medicine, 1993. 560 p. (in Russian).

3. Burykh M. P., Grigor’eva I. A. Klinicheskaia anatomiia mozgovogo otdela golovy [Clinical anatomy of the cerebral part of the head]. Kharkov, Karavella, 2002. 240 p. (in Russian).

4. Bol’shoi meditsinskii slovar’ [Large medical dictionary]. Available at: http://www.medslv.ru (accessed 17 February 2017) (in Russian).

5. Smychek V. B., Ponomareva E. N. Cherepno mozgovaia travma [Skull-brain injury]. Minsk, NII MJe i R, 2010. 430 p. (in Russian).

6. Kondakov E. N., Krivetskii V. V. Cherepno mozgovaia travma: rukovodstvo dlia vrachei nespetsializirovannykh statsionarov [Skull-brain injury: guide for unspecialized hospitals physicians]. St. Petersburg, SpetsLit, 2002. 272 p. (in Russian).

7. Kotel’nikov G. P., Mironov S. P. Travmatologiia: natsional’noe rukovodstvo [Traumatology: national guide]. Moscow, GEOTAR-Media, 2008. 820 p. (in Russian).

8. Kishkovskii A. N., Tiutin L. A. Neotlozhnaia rentgenodiagnostika [Emergency radiology]. Moscow, Medicine, 1989. 238 p. (in Russian).

9. Marusina M. Ia., Kaznacheeva A. O. Sovremennye vidy tomografi i [Modern types of tomography]. St. Petersburg, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 2006. 131 p. (in Russian).

10. Vereshchagin N. V., Bragina L. K. Komp’iuternaia tomografiia golovnogo mozga [Computer tomography of the brain]. Moscow, Medicine, 2002. 251 p. (in Russian).

11. Khornak D. P. Osnovy MRT (Basis of MRI). Available at: http://www.cis.rit.edu/htbooks/mri/inside-r.htm (accessed 17 February 2017) (in Russian).

12. Trufanov G. E., Ramishvili T. E. Luchevaia diagnostika. Travmy golovy i pozvonochnika [Radiology. Head and spinal injuries]. St. Petersburg, ELBI-SPb, 2006. 195 p. (in Russian).

13. Dmitrieva T. B., Krasnov V. N. Psikhiatriia: natsional’noe rukovodstvo [Psychiatry: national guide]. Moscow, GEOTAR-Media, 2009. 993 p. (in Russian).

14. Zhang Q., Ma H., Nioka S., Chance B. Study of near infrared technology for intracranial hematoma detection. J. Biomed. Opt., 2000. vol. 5, iss. 2, pp. 206−213. DOI: https://doi.org/10.1117/1.429988

15. InfraScanner model (2000). Available at: http://www.sintogroup.ru/infrascanner_2000/index.htm (accessed 17 February 2017) (in Russian).

16. Kutergina E. S., Aristov A. A. Near infrared spectroscopy for the determination of intracranial hematoma. In: Modern technics and technologies: XIX international scientifi cpractical conference. Tomsk, Tomsk National Research Polytech University, 2013, pp. 397−398 (in Russian).

17. Korhonen V. O., Myllyla T. S., Kirillin M. Y., Popov A. P., Bykov A. V., Gorshkov A. V., Sergeeva E. A., Kinnunen M., Kiviniemi V. Light propagation in NIR spectroscopy of the human brain. IEEE Journal of Selected Topics in Quantum Electronics, 2014, vol. 20, iss. 2, pp. 289−298. DOI: https://doi.org/10.1109/JSTQE.2013.2279313

18. Herrera-Vega J., Orihuela-Espina F. Image Reconstruction in Functional Optical Neuroimaging the Modelling and Separation of the Scalp Blood Flow: A research proposal. Division of Computational Sciences. National Institute of Astrophysics, Optics and Electronics, INAOE (Mexico) CCC-15-002, 2015. 47 p.

19. Okada E., Firbank M., Schweiger M., Arridge S. R., Cope M., Delpy D. T. Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Applied Optics, 1997, vol. 36, iss. 1, pp. 21−31. DOI: https://doi.org/10.1364/AO.36.000021

20. Leung T. S., Elwell C. E. Estimation of cerebral oxyand deoxy-haemoglobin concentration changes in a layered adult head model using near-infrared spectroscopy and multivariate statistical analysis. Physics in Medicine and Biology, 2005, vol. 50, pp. 5783−5798. DOI: https://doi.org/10.1088/0031-9155/50/24/002

21. Sorvoya H. S. S., Miulliulia T. S., Kirillin M. Iu., Sergeeva E. A., Miulliulia R. A., Elesud A. A., Nikkinen Iu., Tervonen O., Kiviniemi V. Non-invasive, MRI-compatible fi breoptic device for functional near-IR refl ectometry of human brain. Quantum Electronics, 2010, vol. 40, no. 12, pp. 1067−1073. DOI: https://doi.org/10.1070/QE2010v040n12ABEH014503 (in Russian).

22. Boas D. A., Culver J. P., Stott J. J., Dunn A. K. Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt. Express, 2002, vol. 10, iss. 3, pp. 159−170. DOI: https://doi.org/10.1364/OE.10.000159

23. Fang Q. Q., Boas D. A. Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units. Opt. Express, 2009, vol. 17, iss. 22, pp. 20178−20190. DOI: https://doi.org/10.1364/OE.17.020178

24. Chuang C. C., Chen C. M., Hsieh Y. S., Liu T. C., Sun C. W. Brain structure and spatial sensitivity profi le assessing by near-infrared spectroscopy modeling based on 3D MRI data. J. Biophotonics, 2013, vol. 6, iss. 3, pp. 267−274. DOI: https://doi.org/10.1002/jbio.201200025

25. Kurihara K., Kawaguchi H., Obata T., Ito H., Sakatani K., Okada E. The infl uence of frontal sinus in brain activation measurements by near-infrared spectroscopy analyzed by realistic head models. Biomed. Opt. Express, 2012, vol. 3, iss. 9, pp. 2121−2130. DOI: https://doi.org/10.1364/BOE.3.002121

26. Francis R., Khan B., Alexandrakis G., Florence J., MacFarlane D. NIR light propagation in a digital head model for traumatic brain injury (TBI). Biomed. Opt. Express, 2015, vol. 6, iss. 9, pp. 3256−3267. DOI: https://doi.org/10.1364/BOE.6.003256

27. Van der Zee P., Essenpreis M., Delpy D. T. Optical properties of brain tissue. Proc. of SPIE, 1993, vol. 1888, pp. 454–465. DOI: https://doi.org/10.1117/12.154665

28. Sandell J. L., Zhu T. C. A review of in-vivo optical properties of human tissues and its impact on PDT. J. Biophotonics, 2011, vol. 4, no. 11−12, pp. 773−787. DOI: https://doi.org/10.1002/jbio.201100062

29. Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V. Optical properties of human cranial bone in the spectral range from 800 to 2000 nm. Proc. of SPIE, 2006, vol. 6163, pp. 616310-1−616310-11. DOI: https://doi.org/10.1117/12.697305

30. Van der Zee P. Measurement and modelling of the optical properties of human tissue in the near infrared. London, University College London, 1992. 302 p.

31. Delpy D. T., Cope M. Quantfi cation in tissue near-infrared spectroscopy. Phil. Trans. R. Soc. Lond. B., 1997, vol. 352, iss. 1354, pp. 649–659. DOI: https://doi.org/10.1098/rstb.1997.0046

32. Ding H., Lu J. Q., Wooden W. A., Kragel P. J., Hu X. H. Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys. Med. Biol., 2006, vol. 51, pp. 1479– 1489. DOI: https://doi.org/10.1088/0031-9155/51/6/008

33. Binding J., Arous J. B., Leger J.-F., Gigan S., Boccara C., Bourdieu L. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy. Opt. Express, 2011, vol. 19, iss. 6, pp. 4833–4847. DOI: https://doi.org/10.1364/OE.19.004833

34. Ascenzi A., Fabry C. Technique for dissection and measurement of refractive index of osteones. Journal of Biophysical and Biochemical Cytology, 1959, vol. 6, iss. 1, pp. 139−143.

35. Kertzscher U., Schneider T., Goubergrits L., Affeld K., Hanggi D., Spuler A. In vitro Study of Cerebrospinal Fluid Dynamics in a Shaken Basal Cistern after Experimental Subarachnoid Hemorrhage. PLoS ONE, 2012, vol. 7, iss. 8, e41677. DOI: https://doi.org/10.1371/journal.pone.0041677

36. Van der Zee P., Essenpreis M., Delpy D. T. Optical properties of brain tissue. Proc. of SPIE, 1993, vol. 1888, pp. 454−465. DOI: https://doi.org/10.1117/12.154665

37. Faber D. J., Aalders M. C. G., Mik E. G., Hooper B. A., van Gemert M. J. C., van Leeuwen T. G. Oxygen Saturation-Dependent Absorption and Scattering of Blood. Phys. Rev. Lett., 2004, vol. 93, iss. 2, pp. 028102-1−028102-4. DOI: https://doi.org/10.1103/PhysRevLett.93.028102

38. Jacques S. L. Optical properties of biological tissues: a review. Phys. Med. Biol., 2013, vol. 58, no. 11, pp. R37− R61. DOI: https://doi.org/10.1088/0031-9155/58/11/R37

39. Friebel M., Roggan A., Muller G., Meinke M. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J. Biomed. Opt., 2006, vol. 11, iss. 3, pp. 034021-1−034021-10. DOI: https://doi.org/10.1117/1.2203659

Short text (in English): 
Full text (in Russian):