For citation:
Mayorova O. A., Gusliakova O. I., Saveleva M. S., Kulikov O. A., Inozemtseva O. A. Microgels containing whey protein as a new way of treating bladder and renal diseases. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 1, pp. 76-85. DOI: 10.18500/1817-3020-2025-25-1-76-85, EDN: MATQYP
Microgels containing whey protein as a new way of treating bladder and renal diseases
Background and Objectives: This study covers the biophysical aspects of the use of emulsion microgels stabilized with whey protein isolate (WPI) for targeted drug delivery to the urinary system. Emulsion microgels were prepared by the ultrasonic homogenization method which leads to denaturation of the WPI adsorbed on the water-oil interface and formation of WPI microgel layer at the oil droplet. Materials and Methods: The study of the release profile of the model substance Cyanine 7 immobilized in emulsion microgels has demonstrated a prolonged pattern over 72 hours. The effect of emulsion microgels on the viability of various cell cultures (normal fibroblasts (L929), kidney cells (Hek239), renal carcinoma (Renca) and bladder carcinoma (T24)) has been studied, which has shown a dependence of the cytotoxicity level on the cell type. The Hek239 cells have demonstrated particularly increased sensitivity to emulsion microgels. Results: The accumulation and distribution behaviour of emulsion microgels in laboratory mice have also been studied depending on the route of their administration: intravesical or intravenous. The efficiency of targeting the microgels for urinary system components of the urinary system (kidney or bladder) has been assessed by biodistribution using in vivo fluorescence imaging. Systemic administration has demonstrated selective accumulation not only in the liver but also in the kidneys. Intravesical administration has made it possible to maintain a high local concentration of Cyanine 7 in the bladder at least during 2 h. Histological analysis has validated the safety of WPI-based microgels for delivery into the bladder and kidney. Conclusions: The presented delivery system based on the developed emulsion microgels opens up new prospects for the treatment of diseases of the urinary system using both systemic administration and minimally invasive intravesical instillations.
- Kolman K. B. Cystitis and Pyelonephritis. Prim. Care Clin. Off. Pract., 2019, vol. 46, pp. 191–202. https://doi.org/10.1016/j.pop.2019.01.001
- Jansåker F., Li X., Vik I., Frimodt-Møller N., Knudsen J. D., Sundquist K. The Risk of Pyelonephritis Following Uncomplicated Cystitis: A Nationwide Primary Healthcare Study. Antibiotics, 2022, vol. 11, iss. 12, art. 1695. https://doi.org/10.3390/antibiotics11121695
- Jhamb M., Lin J., Ballow R., Kamat A. M., Grossman H. B., Wu X. Urinary tract diseases and bladder cancer risk: A case-control study. Cancer Causes Control, 2007, vol. 18, pp. 839–845. https://doi.org/10.1007/s10552-007-9028-2
- Kantor F., Hartge P., Hoover R. N., Narayana A. S., Sullivan J. W., Fraumeni J. F. Urinary tract infection and risk of bladder cancer. Am. J. Epidemiol., 1984, vol. 119, pp. 510–515. https://doi.org/10.1093/oxfordjournals.aje.a113768
- Maisonneuve P., Agodoa L., Gellert R., Stewart J. H., Buccianti G., Lowenfels A. B., Wolf R. A., Jones E., Dsiney A. P., Briggs D., McCredie M., Boyle P. Cancer in patients on dialysis for end-stage renal disease: An international collaborative study. Lancet, 1999, vol. 354, pp. 93–99. https://doi.org/10.1016/S0140-6736(99)06154-1
- Gupta K., Hooton T. M., Naber K. G., Wullt B., Colgan R., Miller L. G., Moran G. J., Nicolle L. E., Raz R., Schaeffer A. J., Soper D. E. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis., 2011, vol. 52, pp. e103–e120. https://doi.org/10.1093/cid/ciq257
- Rădulescu A., Mădan V., Aungurenci A., Bratu O., Farcaș C., Dinu M., Mischianu D. Antibiotic resistant urinary tract infections in an urology ward. Rom. J. Mil. Med., 2015, vol. 118, pp. 20–22.
- Pietrucha-Dilanchian P., Hooton T. M. Diagnosis, Treatment, and Prevention of Urinary Tract Infection. Microbiol. Spectr., 2016, vol. 4, no. 6, art. uti-0021-2015. https://doi.org/10.1128/microbiolspec.UTI-0021-2015
- Kallen A. J., Welch H. G., Sirovich B. E. Current Antibiotic Therapy for Isolated Urinary Tract Infections in Women. Arch. Intern. Med., 2006, vol. 166, iss. 6, pp. 635–639. https://doi.org/10.1001/archinte.166.6.635
- Hsu C., Chuang Y., Chancellor M. B. Intravesical drug delivery for dysfunctional bladder. Int. J. Urol., 2013, vol. 20, pp. 552–562. https://doi.org/10.1111/iju.12085
- Ramakrishnan V. M., Eswara J. R. Basic Bladder Physiology and Anatomy. In: Stiffel J. T., Dray E. V., eds. Urological Care for Patients with Progressive Neurological Conditions. Cham, Springer, 2020, pp. 7–15. https://doi.org/10.1007/978-3-030-23277-1_2
- Min G., Zhou G., Schapira M., Sun T.-T., Kong X.-P. Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J. Cell Sci., 2003, vol. 116, pp. 4087–4094. https://doi.org/10.1242/jcs.00811
- Irwin D. E., Kopp Z. S., Agatep B., Milsom I., Abrams P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int., 2011, vol. 108, pp. 1132–1138. https://doi.org/10.1111/j.1464-410X.2010.09993.x
- Tyagi P., Tyagi S., Kaufman J., Huang L., Miguel F. de Local Drug Delivery to Bladder Using Technology Innovations. Urol. Clin. North Am., 2006, vol. 33, pp. 519–530. https://doi.org/10.1016/j.ucl.2006.06.012
- Fang J., Wu P., Fang C., Chen C. Intravesical delivery of 5‐aminolevulinic acid from water‐in‐oil nano/submicron‐emulsion systems. J. Pharm. Sci., 2010, vol. 99, pp. 2375–2385. https://doi.org/10.1002/jps.22006
- Saveleva M. S., Lobanov M. E., Gusliakova O. I., Plastun V. O., Prikhozhdenko E. S., Sindeeva O. A., Gorin D. A., Mayorova O. A. Mucoadhesive Emulsion Microgels for Intravesical Drug Delivery: Preparation, Retention at Urothelium, and Biodistribution Study. ACS Appl. Mater. Interfaces, 2023, vol. 15, iss. 21, pp. 25354–25368. https://doi.org/10.1021/acsami.3c02741
- Chen T.-Y., Tai Y.-Y., Chang L.-C., Wu P.-C. Fabrication, optimisation and evaluation of cisplatin-loaded nanostructured carriers for improved urothelium permeability for intravesical administration. J. Microencapsul., 2021, vol. 38, pp. 405–413. https://doi.org/10.1080/02652048.2021.1957037
- Cannon J. B., Shi Y., Gupta P. Emulsions, microemulsions, and lipid-based drug delivery systems for drug solubilization and delivery–Part I: Parenteral applications. In: Liu R., ed. Water-insoluble drug formulation. CRC Press, 2018, pp. 211–245. https://doi.org/10.1201/9781315120492-10
- Singh Y., Meher J. G., Raval K., Khan F. A., Chaurasia M., Jain N. K., Chourasia M. K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, vol. 252, pp. 28–49. https://doi.org/10.1016/j.jconrel.2017.03.008
- Simovic S., Prestidge C. A. Nanoparticle layers controlling drug release from emulsions. Eur. J. Pharm. Biopharm., 2007, vol. 67, pp. 39–47. https://doi.org/10.1016/j.ejpb.2007.01.011
- Buyukozturk F., Benneyan J. C., Carrier R. L. Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics. J. Control. Release, 2010, vol. 142, pp. 22–30. https://doi.org/10.1016/j.jconrel.2009.10.005
- Ming Y., Xia Y., Ma G. Aggregating particles on the O/W interface: Tuning Pickering emulsion for the enhanced drug delivery systems. Aggregate, 2022, vol. 3, iss. 2, art. e162. https://doi.org/10.1002/agt2.162
- Tyagi P., Wu P.-C., Chancellor M., Yoshimura N., Huang L. Recent Advances in Intravesical Drug/Gene Delivery. Mol. Pharm., 2006, vol. 3, pp. 369–379. https://doi.org/10.1021/mp060001j
- Schneider C. A., Rasband W. S., Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, vol. 9, pp. 671–675. https://doi.org/10.1038/nmeth.2089
- Animal Cell Culture Guide. Available at: https://www.atcc.org/resources/culture- guides/animal- cell-culture-guide (accessed September 1, 2024).
- Ostojić S., Pavlović M., Živić M., Filipović Z., Gorjanović S., Hranisavljević S., Dojčinović M. Processing of whey from dairy industry waste. Environ. Chem. Lett., 2005, vol. 3, pp. 29–32. https://doi.org/10.1007/s10311-005-0108-9
- Armetha V., Hariyadi P., Sitanggang A. B., Yuliani S. The stability of whey protein-stabilized red palm oil emulsion from a rheological perspective. Ann. Univ. Dunarea Jos Galati. Fascicle VI – Food Technol., 2022, vol. 46, pp. 35–49. https://doi.org/10.35219/foodtechnology.2022.2.03
- Standard I. Biological evaluation of medical devices – Part 5: Tests for in vitro cytotoxicity. Geneve, Switzerland, International Organization for Standardization, 2023, pp. 1–11.
- Sakaeda T., Hirano K. O/W Lipid Emulsions for Parenteral Drug Delivery. III. Lipophilicity Necessary for Incorporation in Oil Particles Even After Intravenous Injection. J. Drug Target., 1998, vol. 6, pp. 119–127. https://doi.org/10.3109/10611869808997887
- Hippalgaonkar K., Majumdar S., Kansara V. Injectable Lipid Emulsions–Advancements, Opportunities and Challenges. AAPS PharmSciTech, 2010, vol. 11, pp. 1526–1540. https://doi.org/10.1208/s12249- 010-9526-5
- Chansri N., Kawakami S., Yamashita F., Hashida M. Inhibition of liver metastasis by all-trans retinoic acid incorporated into O/W emulsions in mice. Int. J. Pharm., 2006, vol. 321, pp. 42–49. https://doi.org/10.1016/j.ijpharm.2006.05.008
- Huang X., Ma Y., Li Y., Han F., Lin W. Targeted Drug Delivery Systems for Kidney Diseases. Front. Bioeng. Biotechnol., 2021, vol. 9, art. 683247. https://doi.org/10.3389/fbioe.2021.683247
- Minamiguchi K., Tanaka T., Nishiofuku H., Fukuoka Y., Taiji R., Matsumoto T., Saito N., Taguchi H., Marugami N., Hirai T., Kichikawa K. Comparison of embolic effect between water‐in‐oil emulsion and microspheres in transarterial embolization for rat hepatocellular carcinoma model. Hepatol. Res., 2020, vol. 50, pp. 1297–1305. https://doi.org/10.1111/hepr.13561
- Tao S., Lin B., Zhou H., Sha S., Hao X., Wang X., Chen J., Zhang Y., Pan J., Xu J., Zeng J., Wang Y., He X., Huang J., Zhao W., Fan J.-B. Janus particle-engineered structural lipiodol droplets for arterial embolization. Nat. Commun., 2023, vol. 14, art. 5575. https://doi.org/10.1038/s41467-023-41322-6
- 45 reads