For citation:
Illarionova E. D., Moskalenko O. I. Method of recurrent analysis for the generalized synchronization regime detection in different classes of dynamical systems. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 3, pp. 288-294. DOI: 10.18500/1817-3020-2025-25-3-288-294, EDN: HDUENA
Method of recurrent analysis for the generalized synchronization regime detection in different classes of dynamical systems
Background and Objectives: In this paper we study the possibility of quantitative determination of the boundary of the generalized synchronization regime in unidirectionally and mutually coupled systems with different attractor topologies by means of the recurrent analysis. Materials and Methods: As the systems under study we consider Lorenz and Rössler systems, as well as radiotechnical generators coupled unidirectionally and/or mutually. To evaluate the obtained data together with the recurrent analysis the spectrum of Lyapunov exponents or synchronization error were calculated for all the systems under study. Results: We have shown that for identical systems with detuned parameters the results of the method of recurrent analysis coincide with a high degree of accuracy with the values obtained using classical methods for the generalized synchronization regime detection, whereas for noindentical systems the proposed method demonstrates less accurate results. Conclusion: The method of calculation the recurrent diagrams allows us to determine the boundary of generalized synchronization in unidirectionally and mutually coupled systems with different attractor topology. The obtained results are in a good agreement with the results of calculation of the spectrum of Lyapunov exponents and synchronization error.
- Fradkov A. L. Kiberneticheskaya fizika: printsipy i primery [Cybernetic Physics: Principles and Examples]. Saint Petersburg, Nauka, 2003. 208 p. (in Russian).
- Pikovsky A., Rosenblum M., Kurths J. Synchronization: A universal concept in nonlinear sciences. Cambridge, Cambridge University Press, 2001. 493 p.
- Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E, 1995, vol .51, no. 2, pp. 980–994. https://doi.org/10.1103/PhysRevE.51.980
- Moskalenko O. I., Koronovskii A. A., Hramov A. E., Boccaletti S. Generalized synchronization in mutually coupled oscillators and complex networks. Phys. Rev. E, 2012, vol. 86, no. 3, pt. 2, art. 036216. https://doi.org/10.1103/PhysRevE.86.036216
- Pyragas K. Conditional Lyapunov exponents from time series. Phys. Rev. E, 1997, vol. 56, no. 5, pp. 5183–5188. https://doi.org/10.1103/PhysRevE.56.5183
- Hramov A. E., Koronovskii A. A. Generalized synchronization: A modified system approach. Phys. Rev. E, 2005, vol. 71, no. 6, art. 067201. https://doi.org/10.1103/PhysRevE.71.067201
- Ouannas A., Odibat Z. Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dynamics, 2015, vol. 81, pp. 765–771. https://doi.org/10.1007/s11071-015-2026-0
- Rakshit S., Ghosh D. Generalized synchronization on the onset of auxiliary system approach. Chaos, 2020, vol. 30, no. 11, art. 111102. https://doi.org/10.1063/5.0030772
- Shen Y., Liu X. Generalized synchronization of delayed complex-valued dynamical networks via hybrid control. Communications in Nonlinear Science and Numerical Simulation, 2023, vol. 118, no. 2, art. 107057. https://doi.org/10.1016/j.cnsns.2022.107057
- Terry G. R., VanWiggeren G. D. Chaotic communication using generalized synchronization. Chaos, Solitons & Fractals, 2001, vol. 12, iss. 1, pp. 145–152. https://doi.org/10.1016/S0960-0779(00)00038-2
- Koronovskii A. A., Moskalenko O. I., Hramov A. E. On the use of chaotic synchronization for secure communication. Phys. Usp., 2009, vol. 52, no. 12, pp. 1213–1238. https://doi.org/10.3367/UFNe.0179.200912c.1281
- Starodubov A. V., Koronovsky A. A., Khramov A. E., Zharkov Yu. D., Dmitriev B. S. Generalized synchronization in a system of coupled klystron chaotic oscillators. Technical Physics Letters, 2007, vol. 33, no. 7, pp. 612–615. https://doi.org/10.1134/S1063785007070218
- Glass L. Synchronization and rhythmic processes in physiology. Nature, 2001, vol. 410, no. 6825, pp. 277–284. https://doi.org/10.1038/35065745
- Rosenblum M. G., Pikovsky A. S., Kurths J. Synchronization approach to analysis of biological systems. Fluctuation and Noise Letters, 2004, vol. 4, no. 1, pp. L53 – L62. https://doi.org/10.1142/S0219477504001653
- Abarbanel H. D. I., Rulkov N. F., Sushchik M. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E, 1996, vol. 53, no. 5, pp. 4528–4535. https://doi.org/10.1103/PhysRevE.53.4528
- Marwan N., Romano C., Thiel M., Kurths J. Recurrence plots for the analysis of complex systemsю Physics Reports, 2007, vol. 438, no. 5–6, pp. 237–329. https://doi.org/10.1016/j.physrep.2006.11.001
- 283 reads