Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Plastun I. L., Naumov A. A., Zakharov A. A. Mechanisms of intermolecular interaction of mitoxantrone with targeted delivery polyelectrolyte capsules. Izvestiya of Sarat. Univ. Physics. , 2021, vol. 21, iss. 4, pp. 329-342. DOI: 10.18500/1817-3020-2021-21-4-329-342

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.11.2021
Full text:
(downloads: 29)
Language: 
Russian
Article type: 
Article
UDC: 
539.194:539.196.3:544.174.3

Mechanisms of intermolecular interaction of mitoxantrone with targeted delivery polyelectrolyte capsules

Autors: 
Plastun Inna L'vovna, Saratov State Technical University named after Yuri Gagarin
Naumov Anatoly A., Saratov State Technical University named after Yuri Gagarin
Zakharov Alexander A., Saratov State Technical University named after Yuri Gagarin
Abstract: 

Background and Objectives: Polyelectrolyte capsules are one of the most promising materials for targeted drug delivery – one of the rapidly developing areas of modern chemistry, pharmacology and medicine. They have a wide range of applications due to various methods of controlling their physical and chemical properties. In this paper, the possibility of drug delivery and retention in cells due to the formation of hydrogen bonds between a polyelectron capsule and highly toxic drugs on the example of mitoxantrone is investigated by molecular modeling. Materials and Methods: Using molecular modeling by the B3LYP density functional theory method with a base set of 6–31 G (d), we analyze the formation of hydrogen bonds and their effect on the IR spectra and structure of the molecular complex formed as a result of the interaction of the drug mitoxantrone and polyelectrolyte capsules consisting of polyarginine and dextran sulfate. Due to the large size of the polyarginine molecule, which consists of repeating fragments, one link is used in the work, namely arginine. Results: As a result of calculations, various variants of molecular complexes consisting of mitoxantrone, polyarginine and dextran sulfate were considered. The results have shown that dextran sulfate forms weak hydrogen bonds with polyarginine and with mitoxantrone. Polyarginin forms strong and close to strong bonds with mitoxantrone. Conclusions: Based on the results obtained, it can be concluded that polyarginine plays a significant role as a substance that holds mitoxantrone in the capsule, and dextran sulfate, on the contrary, plays the role of a buffer substance. Encapsulation can be considered as one of the main mechanisms of targeted drug delivery and their retention in the cells and, thus, increasing the therapeutic effectiveness of drugs.

Reference: 
  1. Lamprecht A., ed. Nanotherapeutics: Drug Delivery Concepts in Nanoscience. New York, CRC Press, Taylor and Francis Group, 2008. 292 p.
  2. Gupta R. B., Kompella U. B. Nanoparticles Technology for Drug Delivery. New York, Taylor and Francis Group, 2006. 403 p.
  3. Martinho N., Damge C., Reis C. P. Recent Advances in Drug Delivery Systems. Journal of Biomaterials and Nanobiotechnology, 2011, vol. 2, no. 5, pp. 510–526. http://dx.doi.org/10.4236/jbnb.2011.225062
  4. Trushina D. B., Burova A. S., Borodina T. N., Soldatov M. A., Klochko T. Yu., Bukreeva T. V. Thermally induced compression of capsules from the dextran sulfate/polyarginin complex with magnetic nanoparticles in the shell. Kolloidny jurnal [Colloid Journal], 2018, vol. 80, no. 6, pp. 738–744 (in Russian). https://doi.org/10.1134/S0023291218060186
  5. Sergeeva A. S., Gorin D. A., Volodkin D. V. Polyelectrolyte Microcapsule Arrayes : Preparation and Biomedical Applications. BioNanoScience, 2014, vol. 4, pp. 1–14.
  6. Antipina M. N., Kiryukhin M. V., Skirtach A. G., Sukhorukov G. B. Micropackaging via Layer-by-Layer assembly: Microcapsules and microchamber arrays. International Materials Reviews, 2014, vol. 59, pp. 224–244.
  7. Liu W., Wang X., Bai K., Lin M., Sukhorukov G. B., Wang W. Microcapsules functionalized with neuraminidase can enter vascular endothelial cells in vitro. Journal of the Royal Society Interface, 2014, vol. 11, article number. 20141027. http://dx.doi.org/10.1098/rsif.2014.1027
  8. Kim B. S., Park S. W., Hammond P. T. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano, 2008, vol. 2, no. 2, pp. 386–392. https://doi.org/10.1021/nn700408z
  9. Shchukin D. G., Patel A. A., Sukhorukov G. B., Lvov Y. M. Nanoassembly of biodegradable microcapsules for DNA encasing. Journal of the American Chemical Society, 2004, vol. 126, no. 11. P. 3374–3375. https://doi.org/10.1021/ja036952x
  10. Navolokin N. A., German S. V., Bucharskaya A. B., Godage O. S., Zuev V. V., Maslyakova G. N., Pyataev N. A., Zamyshliaev P. S., Zharkov M. N., Terentyuk G. S., Gorin D. A., Sukhorukov G. B. Systemic Administration of Polyelectrolyte Microcapsules: Where Do They Accumulate and When? In Vivo and Ex Vivo Study. Nanomaterials, 2018, vol. 8, no. 10, article number 812. https://doi.org/10.3390/nano8100812
  11. Sindeeva O. A., Verkhovskii R. A., Abdurashitov A. S., Voronin D. V., Gusliakova O. I., Kozlova A. A., Mayorova O. A., Ermakov A. V., Lengert E. V., Navolokin N. A., Tuchin V. V., Gorin D. A., Sukhorukov G. B., Bratashov D. N. Effect of Systemic Polyelectrolyte Microcapsule Administration on the Blood Flow Dynamics of Vital Organs. ACS Biomaterials Science and Engineering, 2020, vol. 6, no. 1, pp. 389–397. https://doi.org/10.1021/acsbiomaterials.9b01669
  12. Inozemtseva O. A., Voronin D. V., Petrov A. V., Petrov V. V., Lapin S. A., Kozlova A. A., Bratashov D. N., Zakharevich A. M., Gorin D. A. Disruption of Polymer and Composite Microcapsule Shells under High-Intensity Focused Ultrasound. Colloid Journal, 2018, vol. 80, no. 6, pp. 771–782. https://doi.org/10.1134/S1061933X19010071
  13. Kopach O., Pavlov A. M., Sindeeva O. A., Sukhorukov G. B., Rusakov D. A. Biodegradable Microcapsules Loaded with Nerve Growth Factor Enable Neurite Guidance and Synapse Formation. Pharmaceutics, 2021, vol. 13, article number 25. https://doi.org/10.3390/pharmaceutics13010025
  14. Prikhozhdenko E. S., Gusliakova O. I., Kulikov O. A., Mayorova O. A., Shushunova N. A., Abdurashitov A. S., Bratashov D. N., Pyataev N. A., Tuchin V. V., Gorin D. A., Sukhorukov G. B., Sindeeva O. A. Target delivery of drug carriers in mice kidney glomeruli via renal artery. Balance between efficiency and safety. Journal of Controlled Release, 2021, vol. 329, pp. 175–190. https://doi.org/10.1016/j.jconrel.2020.11.051
  15. Bruni R., Possenti P., Bordignon C., Li M., Ordanini S., Messa P. Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus. Journal of Controlled Release, 2017, vol. 255, pp. 94–107. https://doi.org/10.1016/j.jconrel.2017.04.005
  16. Enache M., Toader A. M., Enache M. I. MitoxantroneSurfactant Interactions: A Physicochemical Overview. Molecules, 2016, vol. 21, no. 10, article number 1356. https://doi.org/10.3390/molecules21101356
  17. Nieth C., Lage H. Induction of the ABC-Transporters Mdr1/P-gp (Abcb1), Mrp1 (Abcc1), and Bcrp (Abcg2) during establishment of multidrug resistance following exposure to mitoxantrone. Journal of Chemotherapy, 2005, vol. 17, no. 2, pp. 215–223. https://doi.org/10.1179/joc.2005.17.2.215
  18. Kohn W. Nobel Lecture: Electronic structure of matter – wave functions and density functionals. Rev. Mod. Phys., 1999, vol. 71, no. 5, pp. 1253. https://doi.org/10.1103/RevModPhys.71.1253
  19. Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 1993, vol. 98, no. 7. article number 5648. https://doi.org/10.1063/1.464913
  20. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven Jr. T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J. W., Ayala P.Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong W., Gonzalez C., Pople J. A. Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh PA, 2003. 302 p.
  21. Avogadro – Free cross-platform molecular editor – Avogadro. Funding for the Avogadro manual was provided by the University of Pittsburgh Department of Chemistry. Pittsburgh, Pensylvania, 2015. Available at: https://avogadro.cc/ (accessed 10 October 2021).
  22. Bokarev A. N., Plastun I. L. Program for graphical visualization of numerical simulation results based on quantum mechanics methods. Сertifi cate of state registration of a computer program 2015616290 Russian Federation; copyright holder Federal State Budgetary Educational Institution of Higher Professional Education “Saratov State Technical University named after Gagarin Yu. A.” (SSTU named after Gagarin Yu. A.). No. 2015612953; declared. 13 April 2015; registered 05 June 2015, Bull. № 1. 1 p.
  23. Plastun I. L., Bokarev A. N., Zakharov A. A., Naumov A. A. Supramolecular interaction of modificated nanodiamonds, biomolecules and drugs: Molecular modeling. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, vol. 28, no. 3, pp. 183–190. https://doi.org/10.1080/1536383X.2019.1686618
  24. Toh T. B., Lee D.-K., Hou W., Abdullah L. N., Nguyen J., Ho D., Chow E. K.-H. Nanodiamond–Mitoxantrone Complexes Enhance Drug Retention in Chemoresistant Breast Cancer Cells. Molecular Pharmaceutics, 2014, vol. 11, no. 8, pp. 2683–2691. https://doi.org/10.1021/mp5001108
  25. SpectraBase. Available at: https://spectrabase.com/spectrum/1at2yD3X1YB (accessed 26 August 2021).
  26. SpectraBase. Available at: https://spectrabase.com/ spectrum/1E2d4WwETI5 (accessed 26 August 2021).
  27. Iogansen A. V. Infrared spectroscopy and spectral determination of hydrogen bond energy. In: Sokolov N. D., ed. Hydrogen bond. Moscow, Nauka Publ., 1981, pp. 112–155 (in Russian).
  28. Babkov L. M., Puchkovskaya G. A., Makarenko S. P., Gavrilko T. A. IK spektroskopiia molekuliarnukh kristallov s vodorodnymi sviaziami [IR Spectroscopy of Molecular Crystals with Hydrogen Bonds]. Kiev, Naukova dumka Publ., 1989. 169 p. (in Russian).
  29. Steed J. W., Atwood J. L. Supramolecular Chemistry. 2nd ed. New York, John Wiley and Sons, 2009. 1002 p.
Received: 
17.08.2021
Accepted: 
15.10.2021
Published: 
30.11.2021