Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Stepanov E. A., Mayorov A. O., Romanov K. V., Romanov D. V., Romanov V. A. Mathematical modeling of the Parker’s instability development of large-scale vibrations of magnetic fields in the sun convective zone. Izvestiya of Sarat. Univ. Physics. , 2021, vol. 21, iss. 2, pp. 106-115. DOI: 10.18500/1817-3020-2021-21-2-106-115

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.05.2021
Full text:
(downloads: 93)
Language: 
Russian
Article type: 
Article
UDC: 
533.951

Mathematical modeling of the Parker’s instability development of large-scale vibrations of magnetic fields in the sun convective zone

Autors: 
Stepanov Evgeny Alexandrovich, Saratov State University
Mayorov Alexandr Olegovich, Saratov State University
Romanov Konstantin Valeryevich, Krasnoyarsk State Pedagogical University named after V. P. Astafyev
Romanov Dmitry Valeryevich, Krasnoyarsk State Pedagogical University named after V. P. Astafyev
Romanov Valery Alexandrovich, Saratov State University
Abstract: 

Background and Objectives: The physical mechanism of the generation of a steady wave flow at the photospheric level is studied, which ensures anomalous heating of the solar atmosphere at various stages of the solar activity cycle. Background and Objectives: We study the conditions of stability loss for slow modes of oscillation at various depths of the convective zone and the development of Parker’s instability, which leads to the ejection of magnetic fields into the atmosphere of the Sun. Materials and Methods: Based on the
conservative difference scheme, an algorithm for calculating the dynamics of a thin magnetic tube when moving in the convective zone and the solar atmosphere is presented. The equilibrium conditions of the position of the magnetic tube at various depths of the convective zone are determined. The types of linear oscillations of the tube near the equilibrium position were determined: fast (Alfven) and slow (varicose) waves. Results: The physical mechanism for generating weak shock waves at the photospheric level by emerging magnetic fields at the nonlinear stage of development (saturation) of Parker’s instability is determined. Conclusion: The results allow further detailed analysis of wave flow generation in the lower layers of the Sun’s atmosphere at various stages of the cycle activity.

Acknowledgments: 
The authors are grateful to Academician of the Russian Academy of Sciences Sergey V. Alekseenko for discussion of the materials of this work.
Reference: 
  1. Zirin G. Solnechnaya atmosfera [Solar Atmosphere]. Moscow, Mir Publ., 1969. 504 p. (in Russian).
  2. Prist E. R. Solnechnaya magnitogidrodinamika [Solar Magnetohydrodynamics]. Moscow, Mir Publ., 1985. 592 p. (in Russian). DOI: 10.1017/CBO9781139020732
  3. Parker E. M. Kosmicheskiye magnitnyye polya. Ikh obrazovaniye i proyavleniya [Cosmic Magnetic Fields. Their Formation and Manifestations]. Moscow, Mir Publ., 1982. Vol. 1, 608 p.; Vol. 2, 408 p. (in Russian).
  4. Hamada A., Asikainen T., Mursula K. New Homogeneous Dataset of Solar EUV Synoptic Maps from SOHO/EIT and SDO/AIA. Solar Phys., 2020, vol. 295, pp. 2. https://doi.org/10.1007/s 11207-019-1563-y
  5. Alissandrakis C. E., Valentino A. Structure of the Transition Region and the Lower Corona from TRACE and SDO Observation Near the Limb. Solar Phys., 2019, vol. 294, pp. 96. DOI: 10.1007/ s 11207-019-1486-7
  6. Samarsky A. A., Popov Yu. P. Raznostnyye skhemy gazovoy dinamiki [Difference Schemes of Gas Dynamics]. Moscow, Nauka Publ., 1975. 352 p. (in Russian).
  7. Romanov K. V. Matematicheskoye modelirovaniye fizicheskikh protsessov anomal’nogo progreva solnechnoy atmosfery [Mathematical Modeling of the Physical Processes of Anomalous Heating of the Solar Atmosphere]. Thesis Diss. Cand. Sci. (Phys.). Novosibirsk, 2003. 145 p. (in Russian).
  8. Bierman L. Z. Inhomogeneous stellar atmosphere models. Naturwissenschaften,1946, Bd. 33, S. 118.
  9. Schwarzschild M. Stability of the Sun against spherical thermal perturbations. Astrophys. J., 1948, vol. 107, pp. 1.
  10. Deubner Franz-Ludwig. On the Powerspectrum of the Photospheric Resonance Oscillations. Solar Phys., 1972, vol. 23, pp. 304–308.
  11. Landau L. D., Lifshitz E. M. Gidrodinamika [Hydro-dynamic]. Moscow, Nauka Publ., 1986. 736 p. (in Russian).
  12. Ulmschneider P., Schmitz F., Kalkofen W., Bohn H. U. Acoustic Waves in the Solar Atmosphere V. On the chromosphere temperature rise. Astron. Astrophys., 1978, vol. 70, pp. 487–500.
  13. Ulmschneider P. On Frequency and Strength of Shock Waves in the Solar Atmosphere. Solar Phys., 1970, vol. 12, pp. 403–415.
  14. Mayorov A. O., Romanov V. A., Romanov K. V., Romanov D. V. Numerical Modeling of the Physical Mechanism of Anomalous Heating of the Solar Atmosphere. Izv. Saratov Univ. (N. S.), Ser. Physics, 2020, vol. 20, iss. 1, pp. 4–15 (in Russian). https://doi.org/10.18500/1817- 3020-2020-20-1-4-15
  15. Vernazza J. E., Avertt E. H., Loeser R. Structure of the Solar chromosphere. I. Basic computation and summary of the results. Astrophys. J., 1973, vol. 184, pp. 605–631.
  16. Vasquez A. M., Frazin R. A., Vourlidas A., Ward B., Bart van der Holst, Russell A., Philippe L. Tomography of the Solar Corona with the Wide-Field Imager for the Parker Solar Probe. Solar Phys., 2019, vol. 294, pp. 81. DOI: 10.1007/s11207-019-1471-1
  17. McCauley P. I., Cairns I. H., White S. M., Mondal S., Lenc E., Morgan J., Oberoi D. The Low – Frequency Solar Corona in Circular Polarization. Solar Phys., 2019, vol. 294, pp. 106. https: //doi.org/10.1007/s 11207-019-1502-y
  18. Parker E. N. Stellar fibril magnetic system. I. Reduced energy state. Astrophys. J., 1984, vol. 283, pp. 343–348.
  19. Piddington J. H. Solar magnetic fi elds and convection. VI. Basic properties of magnetic fl ux tubes. Astrophysics and Space Science, 1976, vol. 45, pp. 47–62.
  20. Spruit H. C. Motion of magnetic flux tubes in the solar convection zone and chromosphere. Astron. Astrophys., 1981, vol. 98, pp. 155–160.
  21. Christensen-Dalsgaard J., Dappen W., Ajukov S. V., Anderson E. R., Antia H. M., Basu S., Baturin V. A., Berthomieu G., Chaboyer B., Chitre S. M., Cox A. N., Demarque P., Donatowicz J., Dziembowski W. A., Gabriel M., Gough D. O., Guenther D. B., Guzik J. A., Harvey J. W., Hill F., Houdek G., Iglesias C. A., Kosovichev A. G., Leibacher J. W., Morel P., Proffi tt C. R., Provost J., Reiter J., Rhodes E. J. Jr., Rogers F. J., Roxburgh I. W., Thompson M. J., Ulrich R. K. The current state of Solar modeling. Science, 1996, vol. 272, pp. 1286.
  22. Romanov D. V. Matematicheskoye modelirovaniye vliyaniya mnogomernosti na evolyutsiyu magnitnykh poley i strukturu anomal’nogo progreva solnechnoy atmosfery [Mathematical Modeling of the Infl uence of Multidimensionality on the Evolution of Magnetic Fields and the Structure of Anomalous Heating of the Solar Atmosphere]. Thesis Diss. Cand. Sci. (Phys.). Krasnoyarsk, 2003. 128 p. (in Russian).
Received: 
19.07.2020
Accepted: 
06.03.2021
Published: 
31.05.2021