Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Selifonov A. A., Zakharevich A. M., Rykhlov A. S., Tuchin V. V. Kinetics of glycerol-induced molecular diffusion in the normal and cancerous ovarian tissues. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 2, pp. 161-170. DOI: 10.18500/1817-3020-2024-24-2-161-170, EDN: MYMUHS

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.06.2024
Full text:
(downloads: 24)
Language: 
English
Article type: 
Article
UDC: 
535.341.08:535.346.1
EDN: 
MYMUHS

Kinetics of glycerol-induced molecular diffusion in the normal and cancerous ovarian tissues

Autors: 
Selifonov Alexey Andreevich, Education and Research Institute of Nanostructures and Biosystems, Saratov State University
Zakharevich Andrey Mikhailovich, Saratov State University
Rykhlov Andrey Sergeevich, Clinic “Veterinary Hospital”, Saratov State University of Genetics, Biotechnology and Engineering named after N. I. Vavilov
Tuchin Valery Viсtorovich, Saratov State University
Abstract: 

Background and Objectives. There is a global trend towards an increase in the number of patients diagnosed with ovarian cancer during their reproductive years. One of the current clinical technologies is the technology of cryopreservation of removed healthy ovaries in order to preserve fertility and their subsequent transplantation after treatment for cancer of other organs. Glycerol is often used as a non-penetrating agent in freezing to improve follicle survival. Materials and Methods. The work examined the ovaries of cats with diagnoses confirmed by histological studies: follicular phase, luteal phase, serous carcinoma, leimyosarcoma. Diffuse reflectance spectroscopy was used to determine the kinetic parameters of dehydration and optical properties of tissues upon interaction with glycerol. Based on the change in mass over a long period of time, the diffusion coefficient of glycerol in the samples was determined. Results. The effective diffusion coefficient of interstitial water in cat ovarian tissue has been measured: D = (2.6 ± 0.4)·10−6 cm2/s (follicular phase), D = (3.3 ± 0.4)·10−6 cm2/s (luteal phase), D = (3.0 ± 0.3)·10−6 cm2/s (leiomyosarcoma), and D = (1.6 ± 0.2)·10−6 cm2/s (serous carcinoma), which is initiated within 1.5–2 hours of interaction. Diffusion of glycerol occurs over a long period of time, about 400 hours, and for the samples under study is: D = (8.3 ± 2.5)·10−8 cm2/s (follicular phase), D = (5.6 ± 1.7)·10−8 cm2/s (luteal phase), D = (2.2 ± 0.2)·10−8 cm2/s (leiomyosarcoma), and D = (1.1 ± 0.4)·10−7 cm2/s (serous carcinoma). Conclusion. The established perfusion-kinetic parameters of glycerol/interstitial water for the studied samples can be used in clinical practice in the preparation of ovarian tissue for transplantation (cryopreservation), in the transmembrane transfer of drugs, the development of new reproductive technologies, etc.

Acknowledgments: 
The study was supported by the Russian Science Foundation (project No. 22-75-00021).
Reference: 
  1. Sumanasekera W., Beckmann T., Fuller L., Castle M., Huff M. Epidemiology of Ovarian Cancer: Risk Factors and Prevention. Biomed. J. Sci. & Tech. Res., 2018, vol. 11, no. 2, рр. 8405–8417. https://doi.org/10.26717/BJSTR.2018.11.002076
  2. Laguerre M. D., Arkerson B. J., Robinson M. A., Moawad N. S. Outcomes of laparoscopic management of chronic pelvic pain and endometriosis. J. Obstet. Gynecol., 2022, vol. 42, рр. 146–152. https://doi.org/10.1080/01443615.2021.1882967
  3. Tuchin V. V. Optical Clearing of Tissues and Blood. Bellingham, WA, USA, SPIE Press, 2006. 408 р.
  4. Tuchin V. V., Zhu D., Genina E. A. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging. Boca Raton, FL, USA, CRC Press, 2022. 410 р.
  5. Tuchina D. K., Meerovich I. G., Sindeeva O. A., Zherdeva V. V., Savitsky A. P., Bogdanov A. A. Jr., Tuchin V. V. Magnetic resonance contrast agents in optical clearing: Prospects for multimodal tissue imaging. J. Biophotonics, 2020, vol. 13, article no. e201960249. https://doi.org/10.1002/jbio.201960249
  6. Kazachkina N. I., Zherdeva V. V., Meerovich I. G., Saydasheva A. N., Solovyev I. D., Tuchina D. K., Savitsky A. P., Tuchin V. V., Bogdanov A. A. MR and fluorescence imaging of gadobutrol-induced optical clearing of red fluorescent protein signal in an in vivo cancer model. NMR in Biomedicine, 2022, vol. 35, no. 7, article no. e4708. https://doi.org/10.1002/nbm.4708
  7. Silva H. F., Martins I. S., Bogdanov A. A. Jr., Tuchin V. V., Oliveira L. M. Characterization of optical clearing mechanisms in muscle during treatment with glycerol and gadobutrol solutions. J. Biophotonics, 2023, vol. 16, no. 1, article no. e202200205. https://doi.org/10.1002/jbio.202200205
  8. Wang T., Brewer M., Zhu Q. An overview of optical coherence tomography for ovarian tissue imaging and characterization. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, vol. 7, no. 1, рр. 1–16. https://doi.org/10.1002/wnan.1306
  9. Hariri L. P., Bonnema G. T., Schmidt K., Winkler A. M., Korde V., Hatch K. D., Davis J. R., Brewer M. A., Barton J. K. Laparoscopic optical coherence tomography imaging of human ovarian cancer. Gynecol. Oncol., 2009, vol. 114, no. 2, рр. 188–194. https://doi.org/10.1016/j.ygyno.2009.05.014
  10. Sreyankar N., Melinda S., Quing Zh. Classification and analysis of human ovarian tissue using full field opti[1]cal coherence tomography. Biomedical Optics Express, 2016, vol. 7, no. 1, article no. 5182. https://doi.org/10.1364/BOE.7.005182
  11. Schwartz D., Sawyer T. W., Thurston N. Ovarian cancer detection using optical coherence tomography and convolutional neural networks. Neural Comput & Applic., 2022, vol. 34, рр. 8977–8987. https://doi.org/10.1007/s00521-022-06920-3
  12. Yang Y., Li X., Wang T., Kumavor P. D., Aguirre A., Shung K. K., Zhou Q., Sanders M., Brewer M., Zhu Q. Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization. Biomed. Opt. Express, 2011, vol. 9, no. 2, рр. 2551–2561. https://doi.org/10.1364/BO E.2.002551.
  13. Del-Pozo-Lerida S., Salvador C., Martínez-Soler F., Tortosa A., Perucho M., Gimenez-Bonaf P. Preservation of fertility in patients with cancer (Review). Oncol. Rep., 2019, vol. 41, рр. 2607–2614. https://doi.org/10.3892/or.2019.7063
  14. Santos M. L., Pais A. S. Almeida Santos T. Fertility preservation in ovarian cancer patients. Gynecol. Endocrinol., 2021, vol. 37, рр. 483–489.
  15. Del Valle L., Corchon S., Palop J., Rubio J. M., Celda L. The experience of female oncological patients and fertility preservation: A phenomenology study. Eur. J. Cancer Care, 2022, vol. 31, article no. e13757. https://doi.org/10.1111/ecc.13757
  16. Lee S., Ozkavukcu S., Ku S. Y. Current and Future Perspectives for Improving Ovarian Tissue Cryopreservation and Transplantation Outcomes for Cancer Patients. Reprod. Sci., 2021, vol. 28, рр. 1746–1758. https://doi.org/10.1007/s43032-021-00517-2
  17. Selifonov A. A., Rykhlov A. S., Tuchin V. V. Ex vivo study of the kinetics of ovarian tissue optical properties under the influence of 40%-glucose. Izvestiya of Saratov University. Physics, 2023, vol. 23, iss. 2, pp. 120–127. https://doi.org/10.18500/1817-3020-2023-23-2-120-127
  18. Genina E. A., Bashkatov A. N., Korobko A. A., Zubkova E. A., Tuchin V. V., Yaroslavsky I. V., Altshuler G. B. Optical clearing of human skin: Comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt., 2008, vol. 13, no. 2, рр. 021102–021108. https://doi.org/10.1117/1.2899149
  19. Tuchina D. K., Bashkatov A. N., Genina E. A., Tuchin V. V. The effect of immersion agents on the weight and geometric parameters of myocardial tissue in vitro. Biofizika, 2018, vol. 63, no. 5, pp. 989–996. https://doi.org/10.1134/s0006350918050238
  20. Selifonov A. A., Rykhlov A. S., Tuchin V. V. The Glycerol-Induced Perfusion-Kinetics of the Cat Ovaries in the Follicular and Luteal Phases of the Cycle. Diagnostics, 2023, vol. 13, no. 3, рр. 490. https://doi.org/10.3390/diagnostics13030490
  21. Carneiro I., Carvalho S., Henrique R. A., Selifonov A., Oliveira L., Tuchin V. V. Enhanced Ultraviolet Spectroscopy by Optical Clearing for Biomedical Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2021, vol. 27, pp. 1–8. https://doi.org/10.1109/jstqe.2020.3012350
  22. Carneiro I., Carvalho S., Henrique R., Oliveira L., Tuchin V. V. A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J. Biophotonics, 2019, vol. 12, e201800333. https://doi.org/10.1002/jbio.201800333
  23. Oliveira L. R., Ferreira R. M., Pinheiro M. R., Silva H. F., Tuchin V. V., Oliveira L. M. Broadband spectral verification of optical clearing reversibility in lung tissue. J. Biophotonics, 2022, vol. 16, no. 1, e202200185. https://doi.org/10.1002/jbio.202200185
  24. Han J., Sydykov B., Yang H., Sieme H., Oldenhof H., Wolkers W. F. Spectroscopic monitoring of transport processes during loading of ovarian tissue with cryoprotective solutions. Sci. Rep., 2019, vol. 9. no. 1, рр. 15577. https://doi.org/10.1038/s41598-019-51903-5
  25. Lotz J., Içli S., Liu D., Caliskan S., Sieme H., Wolkers W. F., Oldenhof H. Transport processes in equine oocytes and ovarian tissue during loading with cryoprotective solutions. Biochim. Biophys. Acta. Gen. Subj., 2021, vol. 1865, article no. 129797. https://doi.org/10.1016/j.bbagen.2020.129797
  26. D’Errico G., Ortona О., Capuano F., Vitagliano V. Diffusion Coefficients for the Binary System Glycerol + Water at 25 °C. A Velocity Correlation Study. J. Chem. Eng., 2004, vol. 49, no. 6, рр. 1665–1670. https://doi.org/10.1021/je049917u
Received: 
31.03.2024
Accepted: 
29.04.2024
Published: 
28.06.2024