Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Khorev V. S., Kiselev A. R., Shvartz V. A., Lapsheva E. E., Ponomarenko V. I., Prokhorov M. D., Gridnev V. I., Karavaev A. S. Investigation of Delay Time in Interaction between the Regulatory Circuits in the Cardiovascular System of Healthy Humans Using Modeling of Phase Dynamics. Izvestiya of Saratov University. Physics , 2016, vol. 16, iss. 4, pp. 227-237. DOI: 10.18500/1817-3020-2016-16-4-227-237

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 187)
Language: 
Russian
UDC: 
577.31

Investigation of Delay Time in Interaction between the Regulatory Circuits in the Cardiovascular System of Healthy Humans Using Modeling of Phase Dynamics

Autors: 
Khorev Vladimir Sergeevich, Saratov State University
Kiselev Anton Robertovich, Saratov State University
Shvartz Vladimir Aleksandrovich, A. N. Bakulev Scientific Center for Cardiovascular Surgery
Lapsheva Elena Evgen'evna, Saratov State University
Ponomarenko Vladimir Ivanovich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Prokhorov Mikhail Dmitrievich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Gridnev Vladimir Ivanovich, Saratov State Medical University named after V. I. Razumovsky
Karavaev Anatoly Sergeevich, Saratov State University
Abstract: 

Background and Objectives: Low-frequency oscillations with a basic frequency of about 0.1 Hz are observed in the human heart rate and peripheral microcirculation. It is found out that these processes are self-oscillatory and interact between themselves. However, the details and characteristics of this interaction including the direction of coupling and delays in coupling functions are not well studied yet. Thus, the estimation of delay times in the coupling between the low-frequency rhythms of cardiovascular system is an important task for revealing the physiological mechanisms of the cardiovascular regulation. Materials and Methods: The method of coupling detection based on constructing the models of instantaneous phase dynamics is applied for the estimation of delay time in the interaction between the cardiovascular regulatory systems from their experimental time series. The signals of electrocardiogram and photoplethysmogram were recordedusing the device EEGA-21/26 Entsefalan-131-03 (Medikom-MTD, Russia) with a set of standard sensors. The signals were recorded with a frequency of 250 Hz and a resolution of 12 bit. Results: The estimated value of delay time in the interaction between the systems of regulation of cardiovascular low-frequency oscillations is 2.13±0.14 s for the direction «heart – peripheral microcirculation» and 2.12±0.17 s for the direction «peripheral microcirculation – heart». Conclusion: The analysis of two-hour experimental time series of healthy subjects revealed that the regulatory systems of low-frequency oscillations in heart rate and peripheral microcirculation demonstrate bidirectional interaction with delay times of about several seconds.

Reference: 
  1. Guyton А. C., Hall J. E. Medicinskaja fi ziologija [Textbook of medical physiology]. Moscow, Logosfera, 2008. 1296 p. (in Russian).
  2. Vegetativnye rasstroistva: klinika, diagnostika, lechenie [Autonomic dysfunction: clinical features, treatment, diagnosis]. Ed. A. M. Wein. Moscow, Meditsinskoe informatsionnoe agentstvo, 2000. 752 p. (in Russian).
  3. Ponomarenko V. I., Prokhorov M. D., Karavaev A. S., Kiselev A. R., Gridnev V. I., Bezruchko B. P. Synchronization of low-frequency oscillations in the cardiovascular system: Application to medical diagnostics and treatment. The European Physical Journal Special Topics, 2013, vol. 222, pp. 2687–2696. DOI: https://doi.org/10.1140/epjst/e2013-02048-1
  4. Karavaev A. S., Prokhorov M. D., Ponomarenko V. I., Kiselev A. R., Gridnev V. I., Ruban E. I., Bezruchko B. P. Synchronization of low-frequency oscillations in the human cardiovascular system. CHAOS, 2009, vol. 19, pp. 033112. DOI: https://doi.org/10.1063/1.3187794
  5. Kiselev A. R., Gridnev V. I., Karavaev A. S., Posnenkova O. M., Shvartz V. A., Ponomarenko V. I., Prokhorov M. D., Bezruchko B. P. Combination therapy with atenolol and amlodipine and correction of cardiovascular autonomic dysfunction in patients with arterial hypertension. Russian Journal of Cardiology, 2012, no. 6, pp. 66–71 (in Russian). DOI: https://doi.org/10.1111/j.1542-474X.2012.00514.x
  6. Kiselev A. R., Gridnev V. I., Prokhorov M. D., Karavaev A. S., Posnenkova O. M., Ponomarenko V. I., Bezruchko B. P., Shvartz V. A. Evaluation of 5-year risk of cardiovascular events in patients after acute myocardial infarction using synchronization of 0.1-Hz rhythms in cardiovascular system. Annals of Noninvasive Electrocardiology, 2012, vol. 17, no. 3, pp. 204–213.
  7. Kiselev A. R., Gridnev V. I., Prokhorov M. D., Karavaev A. S., Posnenkova O. M., Ponomarenko V. I., Bezruchko B. P. Selection of optimal dose of beta-blocker treatment in myo-cardial infarction patients basing on changes in synchronization between 0.1 Hz oscillations in heart rate and peripheral microcirculation. Journal of Cardiovascular Medicine, 2012, vol. 13, no. 8, pp. 491–498.
  8. Karavaev A. S., Ishbulatov J. M., Ponomarenko V. I., Prokhorov M. D., Gridnev V. I., Bezruchko B. P., Kiselev A. R. Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure. Journal of the American Society of Hypertension, 2016, vol. 10, iss. 3, pp. 235–243. DOI: https://doi.org/10.1016/j.jash.2015.12.014
  9. Julien C. The enigma of Mayer waves: Facts and models. Cardiovascular Research, 2006, vol. 70, pp. 12–21. DOI: https://doi.org/10.1016/j.cardiores.2005.11.008
  10. Keener J., Sneyd J. Mathematical Physiology II: Systems Physiology. New York, Springer, 2009. 580 p.
  11. Cohen M. A., Taylor J. A. Short-term cardiovascular oscillations in man: measuring and modelling the physiologies (Topical Review). Journal of Physiology, 2002, vol. 542, pt. 3, pp. 669–683.
  12. Bernardi L., Leuzzi S., Radaelli A., Passino C., Johnston J. A., Sleight P. Low-frequency spontaneous fl uctuations of R-R interval and blood pressure in conscious humans: a baroreceptor or central phenomenon? Clinical Science, 1994, vol. 87, pp. 649–654.
  13. Cooley R. L., Montano N., Cogliati C., van de Borne P., Richenbacher W., Oren R., Somers V. K. Evidence for a Central Origin of the Low-Frequency Oscillation in RR-Interval Variability. Circulation, 1998, vol. 98, pp. 556–561.
  14. Ringwood J. V., Malpas S. C. Slow oscillations in blood pressure via a nonlinear feedback model. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2001, vol. 280, pp. 1105.
  15. Ishbulatov Y. M., Karavaev A. S., Ponomarenko V. I., Prokhorov M. D., Bezruchko B. P. Model of Cardiovascular System Autonomic Regulation with a Circuit of Barorefl ectory Control of Mean Arterial Pressure in the Form of Delayed-Feedback Oscillator. Izv. Saratov Univ. (N.S.), Ser. Physics, 2015, vol. 15, iss. 2, pp. 32–38.
  16. Milek M. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Circulation, 1996, vol. 93, pp. 1043–1065.
  17. Karavaev A. S., Kiselev A. R., Gridnev V. I., Borovkova E. I., Prokhorov M. D., Posnenkova O. M., PonomarenkoV. I., Bezruchko B. P., Shvartz V. A. Phase and frequency locking of 0.1-Hz oscillations in heart rate and barorefl ex control of blood pressure by breathing of linearly varying frequency as determined in healthy subjects. Human Physiology, 2013. vol. 39, no. 4, pp. 416–25. DOI: https://doi.org/10.1134/S0362119713010040
  18. Baevskiy R. M., Ivanov G. G., Chireykin L. V., Gavrilushkin A. P., Dovgalevskiy P. Ya., Kukushkin Yu. A., Mironova T. F., Prilutskiy D. A., Semenov Yu. N., Fedorov V. F., Fleyshman A. N., Medvedev M. M. Analysis of heart rate variability by use of different electrocardiodiagnostic systems. Viesnik aritmologii [Arrhythmology Digest], 2001, vol. 24, pp. 65–86 (in Russian).
  19. Pikovsky A., Rosenblum M., Kurths J. Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge Univ. Press, 2001. 496 p.
  20. Schreiber T., Schmitz A. Surrogate time series. Physica D, 2000, vol. 142, pp. 346–382.
  21. Kiselev A. R., Karavaev A. S., Gridnev V. I., Prokhorov M. D., Ponomarenko V. I., Borovkova E. I., Shvartz V. A., Ishbulatov Y. M., Posnenkova O. M., Bezruchko B. P. Method of estimation of synchronization strength between low-frequency oscillations in heart rate variability and photoplethysmographic waveform variability. Russian Open Medical Journal, 2016, vol. 5, iss. 1, e0101. DOI: https://doi.org/10.15275/rusomj.2016.0101
  22. Kiselev A. R., Karavaev A. S., Gridnev V. I., Prokhorov M .D., Ponomarenko V. I., Borovkova E., Shvartz V. A., Posnenkova O. M., Bezruchko B. P. Method of assessment of synchronization between low-frequency oscillations in heart rate variability and photoplethysmogram. Cardio-IT, 2016, vol. 3, iss. 1, pp. 1–5. DOI: https://doi.org/10.15275/cardioit.2016.0101 (in Russian).
  23. Ifeachor E. C., Jervis B. W. Digital Signal Processing: A Practical Approach. Harlow, Pearson Education, 2002. 992 p.
  24. Rosenblum M. G., Pikovsky A. S. Detecting direction of coupling in interacting oscillators. Phys. Rev. E, 2001, vol. 64, pp. 045202.
  25. Smirnov D. A., Karpeev I. A., Bezruchko B. P. Detection of coupling between oscillators from their short time series: Condition of applicability of the method of phase dynamics modeling. Technical Physics Letters, 2007, vol. 33, no. 2, pp. 147–150.
  26. Smirnov D. A., Sidak E. V., Bezruchko B. P. A Method for Revealing Coupling between Oscillators with Analytical Assessment of Statistical Signifi cance. Technical Physics Letters, 2013, vol. 39, no. 7, pp.601–605. DOI: https://doi.org/10.1134/S1063785013070110
  27. Smirnov D. A. Characterization of Weak Coupling between Self-Oscillation Systems from Short Time Series: Technique and Applications. Journal of Communications Technology and Electronics, 2006, vol. 51, no. 5, pp. 534–544 (in Russian).
  28. Smirnov D. A., Sidak E. V., Bezruchko B. P. Detection of coupling between oscillators with analytic tests for signifi cance. The European Physical Journal Special Topics, 2013, vol. 222, pp. 2441–2451.
  29. Kiselev A. R., Khorev V. S., Gridnev V. I., Prokhorov M. D., Karavaev A. S., Posnenkova O. M., Ponomarenko V. I., Bezruchko B. P., Shvartz V. A. Interaction of 0.1-Hz oscillations in heart rate variability and distal blood fl ow variability. Human Physiology, 2012, vol. 38, no. 3, pp. 303–309. DOI: https://doi.org/10.1134/S0362119712020107
  30. Khorev V. S., Kulminsky D. D., Mironov S. A. Estimation of delay and interaction between 0.1 Hz regulatory rhythms in cardiovascular system. Bulletin of Medical Internet Conferences, 2014, vol. 4, no. 7, pp. 958–961 (in Russian).
  31. Karavaev A. S., Ishbulatov J. M., Ponomarenko V. I., Prokhorov M. D., Gridnev V. I., Bezruchko B. P., Kiselev A. R. Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure. Journal of the American Society of Hypertension, 2016, vol. 10, iss. 3, pp. 235–243. DOI: https://doi.org/10.1016/j.jash.2015.12.014
  32. Kotani K., Struzik Z. R., Takamasu K., Stanley H. E., Yamamoto Y. Model for Complex Heart Rate Dynamics in Health and Disease. Physical Review E, 2005, vol. 72, pp. 041904.
  33. Ringwood J. V., Malpas S. C. Slow oscillations in blood pressure via a nonlinear feedback model. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 2001, vol. 280, no. 4, R. 1105–1115. DOI: https://doi.org/10.1152/ajpregu.00489.2001
Краткое содержание:
(downloads: 113)