For citation:
Serdobintsev A. A., Venig S. B., Kozlowsky A. V., Volkovoynova L. D. Influence of bending on the structural properties of crystallized silicon films on flexible substrates. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 3, pp. 290-296. DOI: 10.18500/1817-3020-2024-24-3-290-296, EDN: YMZNEU
Influence of bending on the structural properties of crystallized silicon films on flexible substrates
Background and Objectives: Silicon is the main semiconductor material used in many areas of human life. It is used in the creation of solar cells, various electronic devices, sensors etc. Also of particular interest is such an actively developing area as flexible electronics. It finds its application in the electronic devices. Thus, it becomes important to study ways to create polycrystalline films of semiconductor materials such as silicon on flexible substrates. The biggest problem with silicon crystallization on flexible substrates is that these substrates are low-melting, and traditional methods of silicon crystallization have an intense thermal effect on the crystallized material, which leads to destruction of the substrate. Materials and Methods: To create the samples, consecutive magnetron sputtering deposition of a silicon layer and then a tin layer onto a polyimide substrate was used. Silicon was crystallized using an infrared pulsed laser due to high absorption in tin layer. The structure of silicon during its bending deformation was studied using Raman spectroscopy. Results: As a result of the study, the sizes of silicon crystallites after crystallization, as well as the stresses in the films during bending, have been determined.
- Sabatino M. D., Hendawi R., Garcia A. S. Silicon Solar Cells: Trends, Manufacturing Challenges, and AI Perspectives. Crystals, 2024, vol. 14, iss. 2, article no. 167. https://doi.org/10.3390/cryst14020167
- Lovett A. J., Daramalla V., Nayak D., Sayed F. N., Mahadevegowda A., Ducati C., Spencer B. F., Dutton S. E., Grey C. P., MacManus-Driscoll J. L. 3D Nanocomposite Thin Film Cathodes for Micro-Batteries with Enhanced High-Rate Electrochemical Performance over Planar Films. Advanced Energy Materials, 2023, vol. 13, iss. 38, article no. 2302053. https://doi.org/10.1002/aenm.202302053
- Feng L., Song S., Li H., He R., Chen S., Wang J., Zhao G., Zhao X. Nano-Biosensors Based on Noble Metal and Semiconductor Materials: Emerging Trends and Future Prospects. Metals, 2023, vol. 13, iss. 4, article no. 792. https://doi.org/10.3390/met13040792
- Sreejith S., Ajayan J., Kollem S., Sivasankari B. A Comprehensive Review on Thin Film Amorphous Silicon Solar Cells. Silicon, 2022, vol. 14, pp. 8277–8293. https://doi.org/10.1007/s12633-021-01644-w
- Kang H. Crystalline Silicon vs. Amorphous Silicon: The Significance of Structural Differences in Photovoltaic Applications. IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 726, article no. 012001. https://doi.org/10.1088/1755-1315/726/1/012001
- Dong X., Chen L., Su X., Wang Y., Xia Y. Flexible aqueous lithium-ion battery with high safety and large volumetric energy density. Angew Chem. Int. Ed. Engl., 2016, vol. 55, pp. 7474–7477. https://doi.org/10.1002/anie.201602766
- Cao Y., Zhang G., Zhang Y., Yue M., Chen Y., Cai S., Xie T., Feng X. Direct fabrication of stretchable electronics on a polymer substrate with process-integrated programmable rigidity. Adv. Funct. Mater., 2018, vol. 28, pp. 7474–7477. https://doi.org/10.1002/adfm.201804604
- Chortos A., Liu J., Bao Z. Pursuing prosthetic electronic skin. Nat. Mater., 2016, vol. 15, pp. 937–950. https://doi.org/10.1038/nmat4671
- Serdobintsev A. A., Kozhevnikov I. O., Starodubov A. V., Ryabukho P. V., Galushka V. V., Pavlov A. M. Thin amorphous silicon films crystallization upon flexible substrates. Phys. Status Solidi A, 2019, vol. 216, iss. 11, pp. 201–207. https://doi.org/10.1002/pssa.201800964
- Serdobintsev A. A., Kartashova A. M., Demina P. A., Volkovojnova L. D., Kozhevnikov I. O., Galushka V. V. Laser-stimulated metal-induced crystallization of silicon coatings on film and nanofiber polymer substrates. Technical Physics, 2024, vol. 69, iss. 3, pp. 469–477.
- Samohvalov F. A., Smirnov N. I., Rodionov A. A., Zamchij A. O., Baranov E. A., Shuhov Ju. G., Fedotov A. S., Starinskij S. V. Au-induced crystallization of non-stoichiometric amorphous silicon oxide initiated by nanosecond laser pulses. Thermophysics and Aeromechanics, 2023, no. 2, pp. 381–385 (in Russian).
- Vogt M. R. Development of physical models for the simulation of optical properties of solar cell modules. Hanover, Gottfried Wilhelm Leibniz University of Hanover, 2015. 154 p.
- Golovashkin A. I., Motulevich G. P. Optical and electrical properties of tin. Sov. Phys. JETP, 1964, vol. 19, pp. 310–317.
- French R. H., Rodríguez-Parada J. M., Yang M. K., Derryberry R. A., Lemon M. F., Brown M. J., Haeger C. R., Samuels S. L., Romano E. C., Richardson R. E. Optical properties of materials for concentrator photovoltaic systems. 34th IEEE Photovoltaic Specialists Conference (PVSC), 2009, vol. 34, pp. 000394–000399. https://doi.org/10.1109/PVSC.2009.5411657
- Volkovoynova L. D., Kozhevnikov I. O., Pavlov A. M., Serdobintsev A. A., Starodubov A. V. Heat transfer estimation during laser-assisted metal-induced crystallization of amorphous silicon films. Proceedings of 8th International Congress on Energy Fluxes and Radiation Effects (EFRE–2022), 2022, vol. 8, pp. 916–920. https://doi.org/10.56761/EFRE2022.C3-P-005701
- Terekhov V. A., Terukov E. I., Undalov Y. K., Barkov K. A., Kurilo N. A., Ivkov S. A., Nesterov D. N., Seredin P. V., Goloshchapov D. L., Minakov D. A., Popova E. V., Lukin A. N., Trapeznikova I. N. Effect of Plasma Oxygen Content on the Size and Content of Silicon Nanoclusters in Amorphous SiOx Films Obtained with Plasma-Enhanced Chemical Vapor Deposition. Symmetry, 2023, vol. 15, iss. 9, article no. 1800. https://doi.org/10.3390/sym15091800
- Reindl A., Aldabergenova S., Altin E., Frank G., Peukert W. Dispersing silicon nanoparticles in a stirred media mill – investigating the evolution of morphology, structure and oxide formation. Phys. Status Solidi A, 2007, vol. 204, iss. 7, pp. 2329–2338. https://doi.org/10.1002/pssa.200622557
- Volodin V. A., Sachkov V. A. Improved model of optical phonon confinement in silicon nanocrystals. Solids and Liquids, 2013, vol. 116, pp. 87–94. https://doi.org/10.7868/S0044451013010100
- McCarthy J., Perova T. S., Moore R. A., Bhattacharya S., Gamble H., Armstrong B. M. Composition and stress analysis in Si structures using micro-raman spectroscopy. Scanning, 2004, vol. 26, iss. 5, pp. 235–239 https://doi.org/10.1002/sca.4950260504
- Zhigunov D. M., Kamaev G. N., Kashkarov P. K., Volodin V. A. On Raman scattering cross section ratio of crystalline and microcrystalline to amorphous. Appl. Phys. Lett, 2018, vol. 113, iss. 5, article no. 023101. https://doi.org/10.1063/1.5037008
- Serdobintsev A. A., Veselov A. G., Kiryasova O. A., Portnov S. A., Bratashov D. N. Low-temperature plasma pulsed deposition of thin films with nanoscale periodicity of properties. Semiconductors, 2009, vol. 43, iss. 6, pp. 828–831. https://doi.org/10.1134/S106378260906027X
- Li X., Jin S., Zhang R., Gao Y., Liu Z., Yao Y., Wang Y., Wang X., Zhang Y., Tao X. The resolution and repeatability of stress measurement by Raman and EBSD in silicon. Vacuum, 2022, vol. 203, article no. 111276. https://doi.org/10.1016/j.vacuum.2022.111276
- Pogue V., Melkote S. N., Danyluk S. Residual stresses in multi-crystalline silicon photovoltaic wafers due to casting and wire sawing. Materials Science in Semiconductor Processing, 2018, vol. 75, pp. 173–182. https://doi.org/10.1016/j.mssp.2017.11.009
- Lengsfeld P., Nickel N. H., Genzel C., Fuhs W. Stress in undoped and doped laser crystallized poly-Si. Journal of Applied Physics, 2022, vol. 91, iss. 11, pp. 9128–9135. https://doi.org/10.1063/1.1476083
- 365 reads