Cite this article as:

Dzhumaliev А. S., Nikulin Y. V. Influence of Argon Pressure on Texture and Microstructure of Cobalt Films Produced by Dc-Sputtering. Izvestiya of Saratov University. New series. Series Physics, 2017, vol. 17, iss. 4, pp. 254-262. DOI: https://doi.org/10.18500/1817-3020-2017-17-4-254-262


UDC: 
538.975; 539.231; 539.25; 539.26
Language: 
Russian

Influence of Argon Pressure on Texture and Microstructure of Cobalt Films Produced by Dc-Sputtering

Abstract

Background and Objectives: The development of methods of textured Co film formation is of practical interest in the field of creating media with perpendicular recording of information or lateral spin-valve structures. Despite a rather wide study of the growth conditions effects on the microcrystalline structure of sputtered cobalt films, the possibility of changing the texture and microstructure via a change of the gas pressure has not been discussed. The purpose of this study is to show that for dc-sputtering the decrease of argon pressure P from 1 Pa to 0.13–0.09 Pa leads to the radical change in the microcrystalline structure of Co films.

Materials and Methods: Textured cobalt films were dc-sputtered on SiO2/Si substrates at 0.13–0.09 P 1 Pa and room temperature without substrate bias. The microcrystalline structure of the films was studied using the X-ray diffraction and the scanning electron microscopy techniques.

Results: At P ≈ 1–0.22 Pa the cobalt films are formed with mixed crystalline phase: hexagonal close-packed (hcp) with (002) texture and face-centered cubic (fcc) with (111) texture and columnar microstructure. The reduction of the pressure to P 0.13–0.09 Pa (collision-free movement of sputtered atom from to produce the target to the substrate) leads to the formation of fcc Co films with (200) texture and nonuniform microstructure: at ddc microstructure becomes “quasi-columnar”. Decreasing P to the level 0.13–0.09 Pa is a technologically simple way of formation of cobalt films with fcc crystalline structure and (200) texture at room substrate temperature. Co(200) films with fcc crystalline structure can be applied in the field of creating an orienting underlayer to produce multilayered structures with perpendicular magnetic anisotropy or lateral spin-valve structures based on cobalt.

References

1. Sakuma H., Tai H., Ishii K. TEM Analysis of Hcp-Co Films Deposited by Gas Flow Sputtering. Trans. on IEEE, 2008, vol. 3, pp. 375–378. DOI: https://doi.org/10.1002/tee.20285

2. Kitakami O., Okamoto S., Shimada Y. Effect of surface free energy of underlayer materials on crystal growth of Co polycrystalline fi lms. J. Appl. Phys., 1996, vol. 79, pp. 6880–6883. 

3. Hesemann H. Th., Mullner P., Kraft O., Nowak D., Baker S. P., Finkelstein K., Arzt E. Texture dependence of the martensitic transformation in cobalt thin fi lms. Scripta Materialia, 2003, vol. 48, pp. 1129–1133. 

4. Morawe Ch., Stierle A., Metoki N., Briihl K., Zabel H. Optimization of sputtered Co films. JMMM, 1991, vol. 102, pp. 223–232.

5. Gil W., Görlitz D., Horisberger M., Kötzler J. Magnetoresistance anisotropy of polycrystalline cobalt fi lms: Geometrical-size and domain effects. Phys. Rev. B., 2005, vol. 72, pp. 134401. DOI: https://doi.org/10.1103/PhysRevB.72.134401

6. Armyanov S. Crystallographic structure and magnetic properties of electrodeposited cobalt and cobalt alloys. Electrochimica Acta, 2000, vol. 45, pp. 3323–3335.

7. Gupta R., Khandelwal A., Avasthi D. K., Nair K. G. M., Gupta A. Phase transitions in Co thin film induced by low energy and high energy ion beam irradiation. J. Appl. Phys., 2010, vol. 107, pp. 033902. DOI: https://doi.org/10.1063/1.3294609

8. Itoh K., Ichikawa F., Ishida Y., Okamoto K., Uchiyama T., Iguchi I. Columnar grain structure in cobalt fi lms deposited obliquely by introducing oxygen during sputtering. JMMM, 2002, vol. 248, pp. 112–120. 

9. Lee S. B., Kim D.-I., Kim Y., Yoo S. J., Byun J. Y., Han H. N., Lee D. N. Effects of Film Stress and Geometry on Texture Evolution Before and After the Martensitic Transformation in a Nanocrystalline Co Thin Film. Metallurgical and materials Transactions A, 2015, vol. 46A, pp. 1888–1899. DOI: https://doi.org/10.1007/s11661-015-2778-7

10. Ohtake M., Yabuhara O., Higuchi J., Futamoto M. Preparation and characterization of Co single-crystal thin fi lms with hcp, fcc and bcc structures. J. Appl. Phys., 2011, vol. 109, pp. 07C105.

11. Gottwald M., Lee K., Kan J. J., Ocker B., Wrona J., Tibus S., Langer J., Kang S. H., Fullerton E. E. Ultrathin Co/Pd multilayers with enhanced high–temperature annealing stability. Appl. Phys. Lett., 2013, vol. 102, pp. 052405. 

12. Tsutsumi K., Haan P., Eisenberg M., Monsma D., Lodder J. C. Giant magnetoresistance in Co/Cu multilayers sputtered with Kr. JMMM, 1996, vol. 156, pp. 327–328.

13. Yuasa S., Fukushima A., Kubota H., Suzuki Y., Ando K. Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co ⁄ MgO ⁄ Co magnetic tunnel junctions with bcc Co(001) electrodes. Appl. Phys. Lett., 2006, vol. 89, pp. 042505. DOI: https://doi.org/10.1063/1.2236268

14. Chung B.-X., Liu C.-P. Synthesis of cobalt nanoparticles by DC magnetron sputtering and the effects of electron bombardment. Materials Letters, 2004, vol. 58, pp. 1437–1440. 

15. Pavlova A. Y., Nikulin Y. V., Dzhumaliev A. S., Khivintsev Y. V., Zaharov A. A., Preobrazhensky V. L., Pernod P., Filimonov Y. A. Local anodic oxidation of Ni fi lms with (200) and (111) texture. Appl. Surf. Science, 2015, vol. 347, pp. 435–438.

16. Dzhumaliev A. S., Nikulin Yu. V., Filimonov Yu. A. The Formation of the (200) and (110) Textures in Iron Films Prepared by Magnetron Sputtering. Tech. Phys. Letters, 2013, vol. 39, no. 11, pp. 938–941. 

17. Kuzmichev A. I. Magnetronniye raspilitelniye sistemi [Magnetron sputtering systems]. Kiev, Avers, 2008. 244 p. (in Russian). 

18. Alden M., Skriver H. L., Mirbt S., Johansson B. Surface energy and magnetism of the 3d metals. Surf. Science, 1994, vol. 315, pp. 157–172. 

19. Somekh R. E. The thermalization of energetic atoms during the sputtering process. J. Vac. Scien. Technol. A, 1984, vol. 2, pp. 1285–1291. 

20. Walton D. Nucleation of Vapor Deposits. J. Chem. Phys., 1962, vol. 37, pp. 2182–2188. 

21. Ma Q.-M. Xie Z., Wang J., Liu Y., Li Y.-C. Structures, stabilities and magnetic properties of small Co clusters. Phys. Lett. A., 2006, vol. 358, pp. 289–296. 

22. Kittel Ch. Vvedenie v fi ziky tverdogo tela [Introduction to Solid State Physics]. Moscow, Nauka, 1978. 792 p. (in Russian). 

23. Thompson C. V. Structure evolution during processing of polycrystalline fi lms. Annu. Rev. Mater. Sci., 2000, vol. 30, pp. 159–190. 

24. Tromans D. Elastic anisotropy of hcp metal crystals and polycrystals. IJRRAS, 2011, vol. 6, no. 4, pp. 462–483. 

25. Priyadarshini B. G., Aich S., Chakraborty M. Structural and morphological investigations on DC-magnetron sputtered nickel fi lms deposited on Si (100). J. Mater. Sci. 2011, vol. 46, pp. 2860–2873. 

26. Dzhumaliev A. S., Nikulin Yu. V., Filimonov Yu. A. Effect of Bias Voltage Polarity of a Substrate on the Texture, Microstructure, and Magnetic Properties of Ni Films Prepared by Magnetron Sputtering. Physics of the Solid State, 2016, vol. 58, no. 6, pp. 1247–1256. 

27. Dzhumaliev A. S., Nikulin Yu. V., Filimonov Yu. A. Magnetron Sputtering of thin Cu(200) fi lms on Ni(200)/ SiO2/Si substrates. Tech. Phys., 2014, vol. 59, no. 7, pp. 1097–1100. 

28. Karunaisiri R. P. U., Bruinsma R., Rudnick J. Thin-fi lms growth and shadow instability. Phys. Rev. Lett., 1989, vol. 62, pp. 788–791.

Short text (in English): 
Full text (in Russian):