Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Orlova A. S., Bashkatov A. N., Genina E. A., Kolbenev I. O., Kamenskikh T. G., Kamensky I. D., Tuchin V. V. Influence of 40%-glucose Solution on a Human Corneal Structure. Izvestiya of Saratov University. Physics , 2014, vol. 14, iss. 1, pp. 11-19. DOI: 10.18500/1817-3020-2014-14-1-11-19

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 326)
Language: 
Russian
Heading: 
UDC: 
535.015; 53.06; 617.7; 616-073.756.8(04); 617.713-085; 617.741-089; 57.085.1

Influence of 40%-glucose Solution on a Human Corneal Structure

Autors: 
Orlova Angelica Sergeevna, Saratov State Medical University named after V. I. Razumovsky
Bashkatov Alexey Nikolaevich, Saratov State University
Genina Elina Alekseevna, Saratov State University
Kolbenev Igor Olegovich, Saratov State Medical University named after V. I. Razumovsky
Kamenskikh Tatyana Grigor'evna, Saratov State Medical University named after V. I. Razumovsky
Kamensky Ivan Dmitrievich, Saratov State Medical University named after V. I. Razumovsky
Tuchin Valery Viсtorovich, Science Medical Center, Saratov State University
Abstract: 

Effective treatment of the patients with postoperative corneal edema is one of the actual problems in ophthalmology. In this paper results of complex monitoring of influence of 40%-glucose solution on the state of both normal and edematous cornea after a cataract phacoemulsification on the base of date of confocal microscopy and optical coherence tomography have been presented. It has been shown that the glucose solution induces a short-term swelling of the healthy cornea and dehydration of the edematous one, as well as optical clearing of the tissue in the both cases. The influence of the glucose solution on the state of both epithelial and endothelial corneal layers has been studied. The obtained results allow one to extend the possibilities of the monitoring of both structural and optical corneal parameters during the treatment.

Reference: 
  1. Freund D. E., McCally R. L., Farrell R. A. Effects of fi bril orientations on light scattering in the cornea // J. Opt. Soc. Amer. A. 1986. Vol. 3. P. 1970–1982.
  2. Farrell R. A., Freund D. E., McCally R. L. Research on corneal structure // Johns Hopkins Appl. Physics Lab. Techn. Digest. 1990. Vol. 11, № 1. P. 191–199.
  3. Komai Y., Ushiki T. The three-dimensional organization of collagen fi brils in the human cornea and sclera // Invest. Ophthal. Vis. Sci. 1991. Vol. 32. P. 2244–2258.
  4. Leonard D. W., Meek K. M. Refractive indices of the collagen fi brils and extrafi brillar material of the corneal stroma // Biophysical J. 1997. Vol. 72. P. 1382–1387.
  5. Meek K. M., Dennis S., Khan S. Changes in the refractive index of the stroma and its extrafi brillar matrix when the cornea swells // Biophys. J. 2003. Vol. 85, № 4. P. 2205–2212.
  6. Clark J. I. Order and disorder in the transparent media of the eye // Exp. Eye Res. 2004. Vol. 78. P. 427–432.
  7. Muller L. J., Pels E., Schurmans L.R.H.M., Vrensen G.F.J.M. A new three-dimensional model of the organization of proteoglycans and collagen fi brils in the human corneal stroma // Exp. Eye Res. 2004. Vol. 78. P. 493–501.
  8. Hassell J. R., Birk D. E. The molecular basis of corneal transparency // Exp. Eye Res. 2010. Vol. 91. P. 326–335
  9. Doutch J., Quantock A. J., Smith V. A., Meek K. M. Light transmission in the human cornea as a function of position across the ocular surface: theoretical and experimental aspects // Biophysical J. 2008. Vol. 95. P. 5092–5099.
  10. Boote C., Dennis S., Newton R. H., Puri H., Meek K. M. Collagen fibrils appear more closely packed in the prepupillary cornea : optical and biomechanical implications // Invest. Ophthal. Vis. Sci. 2003. Vol. 44, № 7. P. 2941–2948.
  11. Kim Y. L., Walsh J. T. Jr., Goldstick T. K., Glucksberg M. R. Variation of corneal refractive index with hydration // Phys. Med. Biol. 2004. Vol. 49. P. 859–868.
  12. Азанбаев Б. М., Алимбекова З. Ф., Мухамадеев Т. Р., Габбасов А. Р. Лазерная сканирующая томография глаза : передний и задний сегмент. М. : Август Борг, 2008.
  13. Зуев В. К., Туманян А. Р., Аль Джумаа Сухейль. Ка- чественная характеристика клеток заднего эпителия при факоэмульсификации // Офтальмохирургия. 1994. Т. 3. С. 8–13.
  14. Ронкина Т. И., Золоторевский А. В., Багров С. Н. Активация пролиферации эндотелия роговицы чело- века // Офтальмохирургия. 1995. Т. 4. С. 36–42.
  15. Harris J. E., Nordquest L. T. The hydration of the cornea. The transport of water from the cornea // Amer. J. Ophthalmol. 1955. Vol. 40, pt. II. P. 100–111.
  16. Luxenberg M. N., Green K. Reduction of corneal edema with topical hypertonic agents // Amer. J. Ophthalmol. 1971. Vol. 71. P. 847–853.
  17. Бакуткин В. В., Шубочкин Л. П. Увеличение свето- пропускания склеры и патологически измененной роговицы // Офтальмол. журн. 1991. Т. 2. С. 105–107.
  18. Matsuura T., Ikeda H., Idota N., Motokawa R., Hara Y., Annaka M. Anisotropic swelling behavior of the cornea // J. Phys. Chem. B. 2009. Vol. 113, № 51. P. 16314–16322
  19. Hosseini K., Kholodnykh A. I., Petrova I. Y., Esenaliev R. O., Hendrikse F., Motamedi M. Monitoring of rabbit cornea response to dehydration stress by optical coherence tomography // Invest. Ophthal. Vis. Sci. 2004. Vol. 45, № 8. P. 2555–2562.
  20. Ларин К. В., Гхосн М. Г. Измерение с помощью ОКТ скорости диффузии воды и лекарственных препаратов в изолированной и целой роговице глаза // Квантовая электроника. 2006. Т. 36, № 12. С. 1083–1088.
  21. Pircher M., Gotzinger E., Leitgeb R., Fercher A. F., Hitzenberger C. K. Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography // Optics Express. 2003. Vol. 11, № 18. P. 2190–2197.
  22. Wu Y., Clarke D., Mathew A., Nicoud I., Li X. Noninvasive optical coherence tomography monitoring of structure and hydration changes of human corneas in different preservation media // J. Biomed. Opt. 2011. Vol. 16, № 2. P. 026015.
  23. Lin R. C., Shure M. A., Rollins A. M., Izatt J. A., Huang D. Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain refl ectometry // Opt. Lett. 2004. Vol. 29, № 1. P. 83–85.
  24. Ghosn M. G., Tuchin V. V., Larin K. V. Nondestructive quantifi cation of analyte diffusion in cornea and sclera using optical coherence tomography // Invest. Ophthal. Vis. Sci. 2007. Vol. 48, № 6. P. 2726–2733.
  25. Bohnke M., Masters B. R. Confocal microscopy of the cornea // Progress in Retinal and Eye Research. 1999. Vol. 18, № 5. P. 553–628.
  26. Аветисов С. Э., Егорова Г. Б., Федоров А. А., Бобров- ских Н. В. Конфокальная микроскопия роговицы. Сообщение 1. Особенности нормальной морфоло- гической картины // Вестн. офтальмологии. 2008. Т. 3. С. 3–5.
  27. Сметанкин И. Г., Агаркова Д. И. Конфокальная микроскопия и оптическая когерентная томография в оценке анатомо-функционального состояния рого- вичной раны (in vivo) после факоэмульсификации катаракты // Современные технологии в медицине. 2012. Т. 3. С. 89–92.
  28. Zhou Y., Chan K. K. H., Lai T., Tang S. Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography // Biomedical Optics Express. 2013. Vol. 4, № 1. P. 38–50.
  29. Huang Y., Meek K. M. Swelling studies on the cornea and sclera : the effects of pH and ionic strength // Biophysical J. 1999. Vol. 77. P. 1655–1665.
  30. Thoft R. A., Friend J., Dohlman C. H. Corneal glucose concentration : fl ux in the presence and absence of epithelium // Arch. Ophthalmol. 1971. Vol. 85. P. 467–472.
  31. Myung D., Derr K., Huie P., Noolandi J., Ta K.P., Ta C.N. Glucose permeability of human, bovine, and porcine corneas in vitro // Ophthal. Res. 2006. Vol. 38, № 3. P. 158–163.
  32. Genina E. A., Bashkatov A. N., Tuchin V. V. Tissue optical immersion clearing // Expert Review of Medical Devices. 2010. Vol. 7, № 6. P. 825–842.