Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Merkulova K. O., Litvinenko E. S., Postnov D. E. Impact of the light profile on circadian and homeostatic markers in the sleep-wake switching model. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 4, pp. 328-341. DOI: 10.18500/1817-3020-2023-23-4-328-341, EDN: JYONHJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 41)
Article type: 

Impact of the light profile on circadian and homeostatic markers in the sleep-wake switching model

Merkulova Ksenia Olegovna, Saratov State University
Litvinenko Elena Sergeevna, Saratov State University
Postnov Dmitry Engelevich, Saratov State University

Background and Objectives: The goal of this work is to study the impact of the shape of the 24-hour light profile on the behavior of the «sleep-wake» switching model using physiological markers: the time of minimum core body temperature, the time of melatonin peak of plasma, and sleep and wake times. Based on them, you can conclude about the synchronism between circadian, homeostatic and daily rhythms, which is an important criterion for normal human life. Mathematical model: We used the trigger population model of arousal state dynamics, which demonstrates the most realistic process of “sleep-wake” and is based on numeric experimental data. By the means of a mathematical model, we calculated the values of physiological markers and studied the influence of the daily intensity profile on them. Results: As a result of our study, we have found that the light profile, represented by a harmonic function, differs in its impact from non-differentiated forms of profiles and has a stronger influence on the moments of switching between sleep-wake states than on the duration of these states. Also, in the process of our work, we have shown that the shape of the cycle a light-dark is important in the synchronous regime, while at low values of light intensity (synchronism is absent), it has a negligible effect on the behavior of the system and it is required to proceed to the assessment of their dynamics over time. Conclusion: Features of the shape of the light profile must be taken into account when developing experimental protocols.

This work was supported by the Russian Science Foundation (project No. 22-15-00143) (Biophysical mechanisms of brain drainage processes and activation of the release of its tissues from metabolites during sleep).
  1. Duffy J. F., Wright Jr. K. P. Entrainment of the human circadian system by light. Journal of Biological Rhythms, 2005, vol. 20, no. 4, pp. 326–338. https://doi.org/10.1177/0748730405277983
  2. LeGates T. A., Fernandez D. C., Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nature Reviews Neuroscience, 2014, vol. 15, no. 7, pp. 443–454. https://doi.org/10.1038/nrn3743
  3. Benloucif S., Guico M. J., Reid K. J., Wolfe L. F., ’Hermite-Baériaux M., Zee P. C. Stability of melatonin and temperature as circadian phase markers and their relation to sleep times in humans. Journal of Biological Rhythms, 2005, vol. 20, no. 2, pp. 178–188. https://doi.org/10.1177/0748730404273983
  4. Borbly A. A. From slow waves to sleep homeostasis: New perspectives. Archives Italiennes de Biologie, 2001, vol. 139, no. 1, pp. 53–61.
  5. Woelders T., Beersma D. G., Gordijn M. C., Hut R. A., Wams E. J. Daily light exposure patterns reveal phase and period of the human circadian clock. Journal of Biological Rhythms, 2017, vol. 32, no. 3, pp. 274–286. https://doi.org/10.1177/0748730417696787
  6. Baehr E. K., Revelle W., Eastman C. I. Individual differences in the phase and amplitude of the human circadian temperature rhythm: With an emphasis on morningness–eveningness. Journal of Sleep Research, 2000, vol. 9, no. 2, pp. 117–127. https://doi.org/10.1046/j.1365-2869.2000.00196.x
  7. Dumont M., Beaulieu C. Light exposure in the natural environment: Relevance to mood and sleep disorders. Sleep Medicine, 2007, vol. 8, no. 6, pp. 557–565. https://doi.org/10.1016/j.sleep.2006.11.008
  8. Healy K. L., Morris A. R., Liu A. C. Circadian synchrony: Sleep, nutrition, and physical activity. Frontiers in Network Physiology, 2021, vol. 1, article no. 732243. https://doi.org/10.3389/fnetp.2021.732243
  9. Boivin D. B., Boudreau P. Impacts of shift work on sleep and circadian rhythms. Pathologie Biologie, 2014, vol. 62, no. 5, pp. 292–301. https://doi.org/10.1016/j.patbio.2014.08.001
  10. Kervezee L., Kosmadopoulos A., Boivin D. B. Metabolic and cardiovascular consequences of shift work: The role of circadian disruption and sleep disturbances. European Journal of Neuroscience, 2020, vol. 51, no. 1, pp. 396–412. https://doi.org/10.1111/ejn.14216
  11. Mohd Azmi N. A. S., Juliana N., Mohd Fahmi Teng N. I., Azmani S., Das S., Effendy N. Consequences of circadian disruption in shift workers on chrononutrition and their psychosocial well-being. International Journal of Environmental Research and Public Health, 2020, vol. 17, no. 6, article no. 2043. https://doi.org/10.3390/ijerph17062043
  12. Bonmati-Carrion M. A., Arguelles-Prieto R., MartinezMadrid M. J., Reiter R., Hardeland R., Rol M. A., Madrid J. A. Protecting the melatonin rhythm through circadian healthy light exposure. International Journal of Molecular Sciences, 2014, vol. 15, no. 12, pp. 23448–23500. https://doi.org/10.3390/ijms151223448
  13. Casjens S., Brenscheidt F., Tisch A., Beermann B., Büning T., Behrens T., Rabstein S. Social jetlag and sleep debts are altered in different rosters of night shift work. PloS ONE, 2022, vol. 17, no. 1, article no.e0262049. https://doi.org/10.1371/journal.pone.0262049
  14. Hulsegge G., Loef B., van Kerkhof L. W., Roenneberg T., van der Beek A. J., Proper K. I. Shift work, sleep disturbances and social jetlag in healthcare workers. Journal of Sleep Research, 2019, vol. 28, no. 4, article no. e12802. https://doi.org/10.1111/jsr.12802
  15. Sűdy Á. R., Ella K., Bódizs R., Káldi K. Association of social jetlag with sleep quality and autonomic cardiac control during sleep in young healthy men. Frontiers in Neuroscience, 2019, vol. 13, article no. 950. https://doi.org/10.3389/fnins.2019.00950
  16. Deacon S., Arendt J. Adapting to phase shifts. I. An experimental model for jet lag and shift work. Physiology & Behavior, 1996, vol. 59, no. 4–5, pp. 665–673. https://doi.org/10.1016/0031-9384(95)02147-7
  17. Zhang F., Li W., Li H., Gao S., Sweeney J. A., Jia Z., Gong Q. The effect of jet lag on the human brain: A neuroimaging study. Human Brain Mapping, 2020, vol. 41, no. 9, pp. 2281–2291. https://doi.org/10.1002/hbm.24945
  18. Skeldon A. C., Phillips A. J. K., Dijk D. J. The effects of self-selected light-dark cycles and social constraints on human sleep and circadian timing: A modeling approach. Scientific Reports, 2017, vol. 7, no. 1, pp. 1–14. https://doi.org/10.1038/srep45158
  19. Putilov A. A., Verevkin E. G. Simulation of the ontogeny of social jet lag: A shift in just one of the parameters of a model of sleep-wake regulating process accounts for the delay of sleep phase across adolescence. Frontiers in Physiology, 2018, vol. 9, article no. 1529. https://doi.org/10.3389/fphys.2018.01529
  20. van Leeuwen W. M. A., Pekcan C., Barnett M., Kecklund G. Mathematical modelling of sleep and sleepiness under various watch keeping schedules in the maritime industry. Marine Policy, 2021, vol. 130, article no. 104277. https://doi.org/10.1016/j.marpol.2020.104277
  21. Dumont M., Benhaberou-Brun D., Paquet J. Profile of 24-h light exposure and circadian phase of melatonin secretion in night workers. Journal of Biological Rhythms, 2001, vol. 16, no. 5, pp. 502–511. https://doi.org/10.1177/074873001129002178
  22. Stefani O., Freyburger M., Veitz S., Basishvili T., Meyer M., Weibel J., Kobayashi K., Shirakawa Y., Cajochen C. Changing color and intensity of LED lighting across the day impacts on circadian melatonin rhythms and sleep in healthy men. Journal of Pineal Research, 2021, vol. 70, no. 3, article no. e12714. https://doi.org/10.1111/jpi.12714
  23. Wright K. P., McHill A. W., Birks B. R., Griffin B. R., Rusterholz T., Chinoy E. D. Entrainment of the human circadian clock to the natural light-dark cycle. Current Biology, 2013, vol. 23, no. 16, pp. 1554–1558. https://doi.org/10.1016/j.cub.2013.06.039
  24. Postnova S., Lockley S. W., Robinson P. A. Sleep propensity under forced desynchrony in a model of arousal state dynamics. Journal of Biological Rhythms, 2016, vol. 31, no. 5, pp. 498–508. https://doi.org/10.1177/0748730416658806
  25. Borbély A. A. A two process model of sleep regulation. Human Neurobiology, 1982, vol. 1, no. 3, pp. 195–204.
  26. Phillips A. J. K., Robinson P. A. A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. Journal of Biological Rhythms, 2007, vol. 22, no. 2, pp. 167–179. https://doi.org/10.1177/0748730406297512
  27. Hilaire M. A. S., Klerman E. B., Khalsa S. B. S., Wright Jr. K. P., Czeisler C. A., Kronauer R. E. Addition of a non-photic component to a light-based mathematical model of the human circadian pacemaker. Journal of Theoretical Biology, 2007, vol. 247, no. 4, pp. 583–599. https://doi.org/10.1016/j.jtbi.2007.04.001
  28. Berson D. M. Strange vision: Ganglion cells as circadian photoreceptors. Trends in Neurosciences, 2003, vol. 26, no. 6, pp. 314–320. https://doi.org/10.1016/s0166-2236(03)00130-9
  29. Wong K. Y., Dunn F. A., Graham D. M., Berson D. M. Synaptic influences on rat ganglion-cell photoreceptors. The Journal of Physiology, 2007, vol. 582, no. 1, pp. 279–296. https://doi.org/10.1113/jphysiol.2007.133751
  30. May C. D., Dean D. A., Jewett M. E. A revised definition of core body temperature phase that incorporates both state variables of a limit-cycle human circadian pacemaker model improves model stability at low circadian amplitudes. Society for Research on Biological Rhythms Annual Meeting. Jacksonville, FL, 2002, pp. 22–26.
  31. Shanahan T. L., Czeisler C. A. Light exposure induces equivalent phase shifts of the endogenous circadian rhythms of circulating plasma melatonin and core body temperature in men. The Journal of Clinical Endocrinology & Metabolism, 1991, vol. 73, no. 2, pp. 227–235. https://doi.org/10.1210/jcem-73-2-227
  32. Zeitzer J. M., Dijk D.-J., Kronauer R. E., Brown E. N., Czeisler Ch. A. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. The Journal of Physiology, 2000, vol. 526, no. 3, pp. 695–702. https://doi.org/10.1111/j.1469-7793.2000.00695.x
  33. Wright K. P. Jr., Gronfier C., Duffy J. F., Czeisler Ch. A. Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. Journal of Biological Rhythms, 2005, vol. 20, no. 2, pp. 168–177. https://doi.org/10.1177/0748730404274265
  34. Nowozin C., Wahnschaffe A., Rodenbeck A., Zeeuw J., Hadel S., Kozakov R., Schopp H., Munch M., Kunz D. Applying melanopic lux to measure biological light effects on melatonin suppression and subjective sleepiness. Current Alzheimer Research, 2017, vol. 14, no. 10, pp. 1042–1052. https://doi.org/10.2174/1567205014666170523094526
  35. Papatsimpa Ch., Linnartz J.-P. Personalized office lighting for circadian health and improved sleep. Sensors, 2020, vol. 20, no. 16, article no. 4569. https://doi.org/10.3390/s20164569
  36. Arendt J. Biological rhythms during residence in polar regions. Chronobiology International, 2012, vol. 29, no. 4, pp. 379–394. https://doi.org/10.3109/07420528.2012.668997
  37. Bellia L., Fragliasso F. New parameters to evaluate the capability of a daylight-linked control system in complementing daylight. Building and Environment, 2017, vol. 123, pp. 223–242. https://doi.org/10.1016/j.buildenv.2017.07.001
  38. GOST R 55710–2013. Lighting of indoor work places. Norms and methods of measuring from 01.07.2014 (reissue – October 2016). National standard of Russian Federation. Available at: http://docs.cntd.ru/document/1200105707 (accessed April 20, 2023)
  39. McHill A. W., Sano A., Hilditch C. J., Barger L. K., Czeisler Ch. A., Picard R., Klerman E. B. Robust stability of melatonin circadian phase, sleep metrics, and chronotype across months in young adults living in real-world settings. Journal of Pineal Research, 2021, vol. 70, no. 3, pp. e12720. https://doi.org/10.1111/jpi.12720
  40. Gooley J. J., Chamberlain K., Smith K. A., Khalsa S. B. S., Rajaratnam Sh. M. W., Van Reen E., Zeitzer J. M., Czeisler Ch. A., Lockley S. W. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. The Journal of Clinical Endocrinology & Metabolism, 2011, vol. 96, no. 3, pp. E463–E472. https://doi.org/10.1210/jc.2010-2098
  41. Ellis J. G., Allen S. F. Chapter 11. Sleep hygiene and the prevention of chronic insomnia. In: Grandner M. A., ed. Sleep and Health. Academic Press, 2019, pp. 137–145. https://doi.org/10.1016/B978-0-12-815373-4.00011-3
  42. Cutolo M., Maestroni G. J. M., Otsa K., Aakre O., Villaggio B., Capellino S., Montagna P., Fazzuoli L., Veldi T., Peets T., Hertens E., Sulli A. Circadian melatonin and cortisol levels in rheumatoid arthritis patients in winter time: A North and South Europe comparison. Annals of the Rheumatic Diseases, 2005, vol. 64, no. 2, pp. 212–216. https://doi.org/10.1136/ard.2004.023416
  43. Carter M. D., Juurlink D. N. Melatonin. CMAJ, 2012, vol. 184, no. 17, pp. 1923–1923. https://doi.org/10.1503/cmaj.111765
  44. Spinelli E., Werner J. Jr. Human adaptative behavior to antarctic conditions: A review of physiological aspects. WIREs Mechanisms of Disease, 2022, vol. 14, no. 5, article no. e1556. https://doi.org/10.1002/wsbm.1556
  45. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, 2003. 443 p.
  46. Balanov A., Janson N., Postnov D., Sosnovtseva O. From simple to complex. Springer, Berlin, Heidelberg, 2009. 426 p.