Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Astakhov S. V., Astakhov O. V., Elizarov E. M., Strelkova G. I., Astakhov V. V. Impact of anharmonicity on multistability in a self-sustained oscillatory system with two degrees of freedom. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 1, pp. 4-18. DOI: 10.18500/1817-3020-2024-24-1-4-18, EDN: SGQUIN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.03.2024
Full text:
(downloads: 119)
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 
SGQUIN

Impact of anharmonicity on multistability in a self-sustained oscillatory system with two degrees of freedom

Autors: 
Astakhov Sergey Vladimirovich, Lomonosov Moscow State University
Astakhov Oleg Vladimirovich, Sirius University of Science and Technology
Elizarov Evgeny Mikhailovich, Saratov State University
Strelkova Galina Ivanovna, Saratov State University
Astakhov Vladimir Vladimirovich, Saratov State University
Abstract: 

Background and Objectives: The van der Pole oscillator with an additional oscillatory circuit represents one of the simplest self-sustained oscillator system with two degrees of freedom. It is characterized by the phenomenon of frequency pulling, caused by the appearance of bistability and hysteresis. The bifurcation mechanism of pulling and bistability was previously identified, and the bifurcation analysis was carried out for the case of weak excitation when the system exhibits quasi-harmonic self-sustained oscillations. However, the question remains open about the influence of anharmonicity, which develops in the system with increasing excitation parameter, on the phenomenon of multistability and on the bifurcation mechanism of its formation. Is the effect of frequency pulling and the corresponding bistable states preserved over a wide range of values of the control parameters? Are new multistable states being formed? What does the bifurcation structure of the control parameter plane look like? In this paper, the above issues are studied using as an example a self-sustained oscillatory system consisting of the Rayleigh oscillator with an additional linear oscillator. Materials and Methods: Numerical simulation and bifurcation analysis of equilibrium states and limit cycles were performed using the XPPAUTO software package. Results: The results of a two-parameter analysis in a wide range of excitation and frequency detuning parameters have been presented, typical modes of self-sustained oscillations and their bifurcations have been described. Conclusion: It has been shown that the classical phenomenon of frequency pulling is observed only at small values of the excitation parameter of the system. The bistability region, where two limit cycles coexist, corresponding to in-phase and anti-phase oscillation modes in coupled oscillators, is bounded by both the detuning parameter and the excitation parameter.

Acknowledgments: 
The study was supported by the Russian Science Foundation (project No. 20-12-00119, https://rscf.ru/project/23-12-45017/).
Reference: 
  1. Pisarchik A. N., Hramov A. E. Multistability in Physical and Living Systems. Switzerland, Springer, 2022. 408 p. https://doi.org/10.1007/978-3-030-98396-3
  2. Pisarchik A. N., Feudel U. Control of multistability. Physics Reports, 2014, vol. 540, pp. 167–218. https://doi.org/10.1016/j.physrep.2014.02.007
  3. Leonov G. A., Kuznetsov N. V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua’s circuits. Int. J. of Bifur. and Chaos, 2013, vol. 23, no. 1, article no. 1330002. https://doi.org/10.1142/S0218127413300024
  4. Dudkowski D., Jafari S., Kapitaniak T., Kuznetsov N. V., Leonov G. A., Prasad A. Hidden attractors in dynamical systems. Physics Reports, 2016, vol. 637, pp. 1–50. http://dx.doi.org/10.1016/j.physrep.2016.05.002
  5. Hossain M., Garai S., Jafari S., Pal N. Bifurcation, chaos, multistability, and organized structures in a predator–prey model with vigilance. Chaos, 2022, vol. 32, article no. 063139. https://doi.org/10.1063/5.0086906
  6. Manchein C., Santana L., da Silva R. M., Beims M. W. Noise-induced stabilization of the FitzHugh–Nagumo neuron dynamics: Multistability and transient chaos. Chaos, 2022, vol. 32, article no. 083102. https://doi.org/10.1063/5.0086994
  7. Meucci R., Ginoux J. M., Mehrabbeik M., Jafari S., Sprott J. L. Generalized multistability and its control in a laser. Chaos, 2022, vol. 32, article no. 083111. https://doi.org/10.1063/5.0093727
  8. Bao H., Zhang J., Wang N., Kuznetsov N. V., Bao B. C. Adaptive synapse-based neuron model with heterogeneous multistability and riddled basins. Chaos, 2022, vol. 32, article no. 123101. https://doi.org/10.1063/5.0125611
  9. Skardal P. S., Adhikari S., Restrepo J. G. Multistability in coupled oscillator systems with higher-order interactions and community structure. Chaos, 2023, vol. 33, article no. 023140. https://doi.org/10.1063/5.0106906
  10. Perks J., Valani R. N. Dynamics, interference effects, and multistability in a Lorenz-like system of a classical wave–particle entity in a periodic potential. Chaos, 2023, vol. 33, article no. 033147. https://doi.org/10.1063/5.0125727
  11. Dogonasheva O., Kasatkin D., Gutkin B., Zakharov D. Multistability and evolution of chimera states in a network of type II Morris–Lecar neurons with asymmetrical nonlocal inhibitory connections. Chaos, 2022, vol. 32, article no. 101101. https://doi.org/10.1063/5.0117845
  12. Sathiyadevi K., Premraj D., Banerjee T., Lakshmanan M. Additional complex conjugate feedback-induced explosive death and multistabilities. Phys. Rev. E, 2022, vol. 106, article no. 024215. https://doi.org/10.1103/PhysRevE.106.024215
  13. Mugnaine M., Sales M. R., Szezech J. D., Viana Jr. R. L. Dynamics, multistability, and crisis analysis of a sine-circle nontwist map. Phys. Rev. E, 2022, vol. 106, article no. 034203. https://doi.org/10.1103/PhysRevE.106.034203
  14. Foss J., Longtin A., Mensour B., Milton J. Multistability and Delayed Recurrent Loops. Phys. Rev. Lett., 1996, vol. 76, no. 4, pp. 708–711. https://doi.org/10.1103/PhysRevLett.76.708
  15. Baer T. Large-amplitude fluctuations due to longitudinal mode coupling in diode-laser pumped intracavity-doubled Nd:YAG lasers. J. Opt. Soc. Am. B, 1986, vol. 3, pp. 1175–1180. https://doi.org/10.1364/JOSAB.3.001175
  16. Thompson J. M. T. Neustoichivosti i katastrofy v nauke i tekhnike [Instabilities and catastrophes in science and technology]. Moscow, Mir, 1985. 254 p. (in Russian).
  17. Kuznetsov Yu. A. Elements of Applied Bifurcation Theory. New York, Springer-Verlag, 1998. 591 p.
  18. Astakhov V. V., Bezruchko B. P., Gulyaev Y. V. Multistable states in dissipatively coupled Feigenbaum systems. Tech. Phys. Lett., 1989, vol. 15, iss. 3, pp. 60–65 (in Russian).
  19. Astakhov V., Shabunin A., Uhm W., Kim S. Multistability formation and synchronization loss in coupled Henon maps: Two sides of the single bifurcational mechanism. Phys. Rev. E, 2001, vol. 63, article no. 056212. https://doi.org/10.1103/PhysRevE.63.056212
  20. Van der Pol B. On Oscillation Hysteresis in a Triode Generator with Two Degrees of Freedom. Phylosophical Magazine and Journal of Science, 1922, ser. 6, pp. 700–719.
  21. Andronov A. A., Vitt A. A. To the mathematical theory of self-sustained oscillatory systems with two degrees of freedom. J. of Technical Physics, 1934, vol. 4, iss. 1, pp. 122 (in Russian).
  22. Astakhov S., Astakhov O., Astakhov V., Kurths J. Bifurcational Mechanism of Multistability Formation and Frequency Entrainment in a van der Pol Oscillator with an Additional Oscillatory Circuit. Int. J. of Bifur. and Chaos, 2016, vol. 26, no. 7, article no. 1650124-1–1650124-10. https://doi.org/10.1142/S0218127416501248
  23. Astakhov O. V., Astakhov S. V., Krakhovskaya N. S., Astakhov V. V., Kurths J. The emergence of multistability and chaos in a two-mode van der Pol generator versus different connection types of linear oscillators. Chaos, 2018, vol. 28, article no. 063118. https://doi.org/10.1063/1.5002609
  24. Ermentrout B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Philadelphia, SIAM, 2002. 290 p.
  25. Strett J. B. (Lord Rayleigh). Teoriya zvuka: v 2 t. T. 1 [Theory of sound. Vol. 1]. Moscow, Gosudarstvennoe isdatel’stvo tekhniko-teoreticheskoi literatury, 1955. 504 p. (in Russian).
  26. Andronov A. A., Vitt A. A., Khaikin S. E. Teoriya kolebanii [Theory of oscillations]. Moscow, Gosudarstvennoe izdatel’stvo fiziko-matematicheskoi literatury, 1959. 916 p. (in Russian).
  27. Landa P. S. Nelineinye kolebaniya i volny [Nonlinear oscillations and waves]. Moscow, Fizmatlit, 1997. 496 p. (in Russian).
  28. Kuznetsov A. P., Kuznetsov S. P., Ryskin N. M. Nelineinye kolebaniya [Nonlinear oscillations]. Moscow, Izdatel’stvo fiziko-matematicheskoi literatury, 2002. 292 p. (in Russian).
  29. Kurkin S. A., Kulminskiy D. D., Ponomarenko V. I., Prokhorov M. D., Astakhov S. V., Hramov A. E. Central pattern generator based on self-sustained oscillator coupled to a chain of oscillatory circuits. Chaos, 2022, vol. 32, article no. 033117. https://doi.org/10.1063/5.0077789
Received: 
24.09.2023
Accepted: 
15.12.2023
Published: 
01.03.2024