Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Mordovina E. A., Tsyupka D. V., Bakal A. A., Abramova A. M., Goryacheva I. I. Fluorescent nanostructures based on folic acid and citrate: Synthesis and properties. Izvestiya of Sarat. Univ. Physics. , 2021, vol. 21, iss. 3, pp. 285-292. DOI: 10.18500/1817-3020-2021-21-3-285-292

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 27)
Article type: 

Fluorescent nanostructures based on folic acid and citrate: Synthesis and properties

Mordovina Ekaterina Alekseevna, Saratov State University
Tsyupka Daria Vladislavovna, Saratov State University
Bakal Artem Alekseev, Saratov State University
Abramova Anna Mihailovna, Saratov State University
Goryacheva Irina Iur'evna, Saratov State University

The fluorescent properties of products obtained by the hydrothermal treatment of organic raw materials are of great interest. Such products are usually colloidal stability in water, have low cytotoxicity, and high photostability. One of their advantages is a wide choice of starting materials and the relative simplicity of synthesis. The use of folic acid as a precursor for fluorescent nanostructures opens up the possibility of targeted imaging. This article shows a one-step synthesis of fluorescent nanostructures from folic acid and citrates. The effect of citrate concentration in the range from 0.05 to 2 mol/l on the optical properties of the synthesized structures is also studied.

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. FSRR-2020-0002).
  1. Bhalerao K. D., Lee S. C., Soboyejo W. O., Soboyejo A. B. O. A folic acid-based functionalized surface for biosensor systems. J. Mater. Sci. Mater. Med., 2007, vol. 18, iss. 1, pp. 3–8. https://doi.org/10.1007/s10856-006-0657-x
  2. Chen C., Ke J., Zhou X. E., Yi. W., Brunzelle J. S., Li J., Yong E. L., Xu H. E., Melcher K. Structural basis for molecular recognition of folic acid by folate receptors. Nature, 2013, vol. 500, no. 7463, pp. 486–489. https://doi.org/10.1038/nature12327
  3. Zeng L., Luo L., Pan Y., Luo S., Lu G., Wu A. In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. Nanoscale, 2015, vol. 7, no. 19, pp. 8946–8954. https://doi.org/10.1039/C5NR01932J
  4. Cheng Z., Thorek D. L. J., Tsourkas A. GadoliniumConjugated Dendrimer Nanoclusters as a Tumor-Targeted T1 Magnetic Resonance Imaging Contrast Agent. Angew. Chem., 2010, vol. 122, pp. 356–360. https://doi.org/10.1002/ange.200905133
  5. Wang S., Lee R. J., Mathias C. J., Green M. A., Low P. S. Synthesis, Purification, and Tumor Cell Uptake of 67GaDeferoxamine-Folate, a Potential Radiopharmaceutical for Tumor Imaging. Bioconjug. Chem., 1996, vol. 7, no. 1, pp. 56–62. https://doi.org/10.1021/bc9500709
  6. Lee J. W., Lu J. Y., Low P. S., Fuchs P. L. Synthesis and Evaluation of Taxol-Folic Acid Conjugates as Targeted Antineoplastics. Bioorg. Med. Chem., 2002, vol. 10, pp. 2397–2414. https://doi.org/10.1016/S0968-0896(02)00019-6
  7. Novikova A. S., Ponomaryova Т. S., Goryacheva I. Y. Fluorescent AgInS/ZnS quantum dots microplate and lateral flow immunoassays for folic acid determination in juice samples. Microchim. Acta, 2020, vol. 187, pp. 1–9. https://doi.org/10.1007/s00604-020-04398-1
  8. Vostrikova A. M., Kokorina A. A., Mitrophanova A. N., Sindeeva O. A., Sapelkin A. V., Sukhorukov G. B., Gorya cheva I. Y. One step hydrothermal functionalization of gold nanoparticles with folic acid. Colloids and Surfaces B: Biointerfaces, 2019, vol. 181, pp. 533–538. https://doi.org/10.1016/j.colsurfb.2019.05.072
  9. Thomas A. H., Lorente C., Capparelli A. L., Pokhrel M. R., Braun A. M., Oliveros E. Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: pH effects. Photochem. Photobiol. Sci., 2002. vol. 1, no. 6, pp. 421–426. https://doi.org/10.1039/B202114E
  10. Tsyupka D. V., Mordovina E. A., Sindeeva O. A., Sapelkin A. V., Sukhorukov G. B., Goryacheva I. Y. High-fl uorescent product of folic acid photodegradation: Optical properties and cell effect. J. Photochem. Photobiol. A, 2021, vol. 407, pp. 113045. https://doi.org/10.1016/j. jphotochem.2020.113045
  11. Vora A., Riga A., Dollimore D., Kenneth A. S. Thermal stability of folic acid. Thermochim. Acta, 2002, vol. 392–393, pp. 209–220. https://doi.org/10.1016/ S0040-6031(02)00103-X
  12. Campos B. B., María Moreno Oliva, Rafael ContrerasCáceres, Enrique Rodriguez-Castellón, José JiménezJiménez, Joaquim C. G. Esteves da Silva, Manuel Algarra. Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt (IV) detection. Journal of Colloid and Interface Science, 2016, vol. 465, pp. 165–173. https://doi.org/10.1016/j.jcis.2015.11.059
  13. Zhu S., Zhao X., Song Y., Lu S., Yang B. Beyond bottom-up carbon nanodots: Citric-acid derived organic molecules. Nano Today, 2016, vol. 11, no. 2, pp. 128–132. https://doi.org/10.1016/j.nantod.2015.09.002
  14. Kokorina A. A., Prikhozhdenko E. S., Sukhorukov G. B., Sapelkin A. V., Goryacheva I. Yu. Luminescent carbon nanoparticles: Synthesis, methods of investigation, applications. Russ. Chem. Rev., 2017, vol. 86, no. 11, pp. 1157–1171 (in Russian). https://doi.org/10.1070/RCR4751
  15. Kokorina A. A., Ermakov A. V., Abramova A. M., Goryacheva I. Yu., Sukhorukov G. B. Carbon nanoparticles and materials on their basis. Colloids Interfaces, 2020, vol. 4, no. 4, pp. 42. https://doi.org/10.3390/colloids4040042
  16. Wu Z., Hou C., Qian Y. Solubility of Folic Acid in Water at pH Values between 0 and 7 at Temperatures (298.15, 303.15, and 313.15) K. J. Chem. Eng. Data, 2010, vol. 55, no. 9, pp. 3958–3961. https://doi.org/10.1021/je1000268