Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Ten G. N., Gerasimenko A. Y., Savelyev M. S., Shcherbakova N. E., Slepchenkov M. M., Glukhova O. E. Experimental and theoretical study of the effect of temperature on collagen in aqueous solution. Izvestiya of Saratov University. Physics , 2022, vol. 22, iss. 4, pp. 338-349. DOI: 10.18500/1817-3020-2022-22-4-338-349, EDN: OUMCVH

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 149)
Article type: 

Experimental and theoretical study of the effect of temperature on collagen in aqueous solution

Ten Galina Nikolaevna, Saratov State University
Gerasimenko Aleksander Yur'evich, National Research University «Moscow Institute of Electronic Technology»
Savelyev Mikhail S., National Research University «Moscow Institute of Electronic Technology»
Shcherbakova Natalia Evgen'evna, Russian Research Anti-Plague Institute «Microbe»
Slepchenkov Mikhail Mikhailovich, Saratov State University
Glukhova Olga Evgen'evna, Saratov State University

Background and Objectives: An experimental andtheoretical study ofthe effect oftemperature onthe vibrational spectra of an aqueous collagen solution in the range of 60–90°C was carried out. Results: According to the performed experiment, at first at a temperature of 60°C, an increase in the intensity of the absorption bands of the IR spectra of collagen is observed compared to room temperature, and then, with further heating of the aqueous collagen solution, the intensity of the absorption bands decreases. To explain this effect, a molecular modeling method was used, when the oligopeptide Gly-Pro-Hyp-Gly, the most frequently repeated in the structure of collagen of any type, was selected as the main structural fragment. The interpretation of the vibrational spectra of the selected molecular fragment of collagen showed qualitative and quantitative agreement with the experimental spectra, which made it possible to use it to explain the temperature dependence. Conclusion: An increase in the intensity of the absorption bands of the experimental IR spectrum of collagen at 60°C is associated with a change in the conformation of the zwitter-ion form of the oligopeptide Gly-Pro-Hyp-Gly, which occurs due to the rotation of the bipolar groups N+H3 and CO relative to each other. A further increase in temperature leads to a decrease in the pH of the medium, and, as a consequence, to the formation of protonated Gly ionic forms located at the ends of the Gly-Pro-Hyp-Gly molecular fragment in an aqueous solution, which is confirmed by the calculation of theoretical spectra and their comparison with experiment.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the State Task (project No. FSRR-2020-0004).
  1. Chamberlain L., Yannas I., Hsu H., Strichartz G., Spector M. Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp. Neurol., 1998, vol. 154, pp. 315–329. https://doi.org/10.1006/exnr.1998.6955
  2. Ott H. C., Matthiesen T. S., Goh S. K., Black L. D., Kren S. M., Netoff T. I., Taylor D. A. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med., 2008, vol. 14, pp. 213–221. https://doi.org/10.1038/nm1684
  3. Teebken O., Puschmann C., Breitenbach I., Rohde B., Burgwitz K., Haverich A. Preclinical development of tissue-engineered vein valves and venous substitutes using re-endothelialised human vein matrix. Eur. J. Vasc. Endovasc. Surg., 2009, vol. 37, pp. 92–102. https://doi.org/10.1016/j.ejvs.2008.10.012
  4. Takeshita F., Hokaiwado N., Honma K., Banas A., Ochiya T. Local and systemic delivery of siRNAs for oligonucleotides therapy. Methods. Mol. Biol., 2009, vol. 487, pp. 83–92. https://doi.org/10.1007/978-1-60327-547-7_4
  5. Takeshita F., Ochiya T. Therapeutic potential of RNA interference against cancer. Cancer Sci., 2006, vol. 97, pp. 689–696. https://doi.org/10.1111/j.1349-7006.2006.00234.x
  6. Sano A., Maeda M., Nagahara S., Ochiya T., Honma K., Itoh H. Atelocollagen for protein and gene delivery. Adv. Drug. Deliv. Rev., 2003, vol. 55, iss. 12, pp. 1651–1677. https://doi.org/10.1016/j.addr.2003.08.005
  7. Yang C., Hillas P. J., Baez J. A., Nokelainen M., Balan J., Tang, J., Spiro R., Polarek J. W. The application of recombinant human collagen in tissue engineering. BioDrugs, 2004, vol. 18, pp. 103–119. https://doi.org/10.2165/00063030-200418020-00004
  8. Riaz T., Zeeshan R., Zarif F. A., Ilyas K., Muhammad N., Safi S. Z., Rahim A., Rizvi S. A., Rehman I. U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev., 2018, vol. 53, pp. 703–746. https://doi.org/10.1080/05704928.2018.1426595
  9. Shoulders M. D., Raines R. T. Collagen structure and stability. Annu. Rev. Biochem., 2009, vol. 78, pp. 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
  10. Qin L., Bi J. R., Li D. M., Dong M., Zhao Z. Y., Dong X. P., Zhou D. Y., Zhu B. W. Unfolding/refolding study on collagen from sea cucumber вased on 2d fourier transform infrared spectroscopy. Molecules, 2016, vol. 21, pp. 1546–1560. https://doi.org/10.3390/molecules21111546
  11. Tamilmozhi S., Veeruraj A., Arumugam M. Isolation and characterization of acid and pepsin-solubilized collagen from the skin of sail?sh (Istiophorus platypterus). Food Res. Int., 2013, pp. 1499–1505. https://doi.org/10.1016/j.foodres.2013.10.002
  12. Veeruraj A., Arumugam M., Ajithkumar T., Balasubramanian T. Isolation and characterization of collagen from the outer skin of squid (Doryteuthis singhalensis). Food Hydro-colloids, 2015, vol. 43, pp. 708–716. https://doi.org/10.1016/j.foodhyd.2014.07.025
  13. Chen J., Li L., Yi R., Xu N., Gao R., Hong B. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT-Food Sci.Technol., 2016, vol. 66, pp. 453–459. https://doi.org/10.1016/j.lwt.2015.10.070
  14. Lee J. K., Kang S. I., Kim Y. J., Kim M. J., Heu M. S., Choi B. D., Kim J. S. Comparison of collagen characteristics of sea-and freshwater-rainbow trout skin. Food Sci. Biotechnol., 2016, vol. 25, pp. 131–136. https://doi.org/10.1007/s10068-016-0020-z
  15. Jenkins C. L., Vasbinder M. M., Miller S. J., Raines R. T. Peptide bond isosteres: Ester or (E)-alkene in the backbone of the collagen triple helix. Org. Lett., 2005, vol. 7, pp. 2619–2622. https://doi.org/10.1021/ol050780m
  16. Boryskina O. P., Bolbukh T. V., Semenov M. A., Gasan A. I., Maleev V. Y. Energies of peptide-peptide and peptide-water hydrogen bonds in collagen: Evidences from infrared spectroscopy, quartz piezogravimetry, and differential scanning calorimetry. J. Mol. Struct., 2007, vol. 827, pp. 1–10. https://doi.org/10.1016/J.MOLSTRUC.2006.05.002
  17. Eifler J. Q. Application of ab initio calculations to collagen and brome mosaic virus. Kansas City, Missouri, 2014. 92 p.
  18. Téllez S. C. A., Pereira L., Santos L., Rajasekaran R., Fávero P., Martin A. A. DFT:B3LYP/3–21G theoretical insights on the confocal Raman experimental observations in skin dermis of healthy young, healthy elderly, and diabetic elderly women. J. Biomed. Opt., 2016, vol. 21 (12), pp. 125002. https://doi.org/10.1117/1.JBO.21.12.125002
  19. Bryan M. A., Brauner J. W., Anderle G., Flach C. R., Brodsky B., Mendelsohn R. FTIR Studies of Collagen Model Peptides: Complementary Experimental and Simulation Approaches to Conformation and Unfolding. J. Am. Chem. Soc., 2007, vol. 129, pp. 7877–7884. https://doi.org/10.1021/ja071154i
  20. Eifler J., Rulis P., Tai R., Ching W. Y. Computational Study of a Heterostructural Model of Type I Collagen and Implementation of an Amino Acid Potential Method Applicable to Large Proteins. Polymers, 2014, vol. 6, pp. 491–514. https://doi.org/10.3390/polym6020491
  21. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09. Gaussian Inc., Wallingford CT, 2009. 394 р.
  22. Ten G. N., Shcherbakova N. E., Baranov V. I. Kolebatel’nye spektry osnovnykh aminokislot v raznykh fazovykh sostoyaniyakh [Vibrational spectra of basic amino acids in different phase states]. Saratov, Izdatel’stvo Saratovskogo universiteta, 2017. 188 p. (in Russian).
  23. Ten G. N., Gerasimenko A. Yu., Shcherbakova N. E., Baranov V. I. Interpretation of IR and Raman spectra of albumin. Izvestiya of Saratov University. Physics, 2019, vol. 19, iss. 1, pp. 43–57 (in Russian). https://doi.org/10.18500/1817-3020-2019-19-1-43-57
  24. Khokhlov V. Yu., Selemenev V. F., Khokhlova O. N., Zagorodny A. A. Ionic equilibria in amino acid solutions at different temperatures. Bulletin of VSU, Ser. chemistry, biology, pharmacy, 2003, no. 1, pp. 18–22 (in Russian).