Cite this article as:

Bashkatov A. N., Genina E. A., Tuchin V. V. Estimation of Glucose Diffusion Coefficient in Human Dura Mater. Izvestiya of Saratov University. New series. Series Physics, 2018, vol. 18, iss. 1, pp. 32-45. DOI: https://doi.org/10.18500/1817-3020-2018-18-1-32-45


UDC: 
535.8:535.36:57.085.2:57.013:53.06:76.03.29
Language: 
Russian

Estimation of Glucose Diffusion Coefficient in Human Dura Mater

Abstract

Background and Objectives: Optical clearing of dura mater caused by hyperosmotic immersion liquids is important for the development of noninvasive methods of brain optical tomography and for the study of microcirculation and homeostasis of tissue fluids. It allows significantly increasing the spatial resolution and the probing depth of brain. Obviously, a quantitative description of the optical clearing processes requires the development of reliable physicomathematical models, which in turn requires the knowledge of the diffusion rate parameters of immersion agents in tissues. In spite of the fact that diffusion of many biocompatible chemicals, in particular glucose, in aqueous solutions is well described, their diffusion in tissues continues to be poorly investigated. Thus, the goal of the study is estimation of the relative glucose diffusion coefficient in the human dura mater in vitro.

Materials and Methods: The method of estimating the relative diffusion coefficient of immersion liquids in tissues was based on the analysis of the kinetics of the change in the collimated transmittance of a tissue sample under the action of these liquids. The kinetics of the interstitial fluid replacement by immersion liquid was measured by successive recording of collimated transmittance spectra in the spectral range of 400–700 nm. For a quantitative description of the process, a corresponding model that assumed a constant diffusion coefficient in the entire volume of the tissue sample was developed.

Results: In the study the results of the experiments, performed for a 40%-glucose solution, are presented. The relative diffusion coefficient of glucose in dura mater obtained using the approximation of the experimental data within the framework of the proposed model, was 6.08×10-6 ± 2.26×10-8 cm2/s. Based on Fick’s first law, the coefficient of permeability of the dura mater for the glucose solution was calculated, the value of which was (1.3 ±0.13)×10^(−4) cm/s.

Conclusion: The obtained results can be used in the development of new and optimization of existing non-invasive methods of optical tomography as well as for the development of methods of laser therapy and surgery of various brain diseases

References

1. Tuchin V. V. Optical clearing of tissues and blood. Bellingham, WA, USA, SPIE Press, 2005, vol. PM 154. 254 p. 

2. Genina E. A., Bashkatov A. N., Tuchin V. V. Tissue optical immersion clearing. Expert Review of Medical Devices, 2010, vol. 7, no. 6, pp. 825–842. 

3. Genina E. A., Bashkatov A. N., Sinichkin Yu. P., Yanina I. Yu., Tuchin V. V. Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. J. Biomed. Photonics & Eng., 2015, vol. 1, no. 1, pp. 22–58. 

4. Genina E. A., Bashkatov A. N., Sinichkin Yu. P., Yanina I. Yu., Tuchin V. V. Optical clearing of tissues: bene fi ts for biology, medical diagnostics, and phototherapy. In: Handbook of Optical Biomedical Diagnostics. Ed. Valery V. Tuchin. 2nd ed. Vol. 2. Methods. Bellingham, WA, USA, SPIE Press, 2016, ch. 10, pp. 565–637. 

5. Genina E. A., Bashkatov A. N., Larin K. V., Tuchin V. V. Light-tissue interaction at optical clearing. In: Laser Imaging and Manipulation in Cell Biology. Ed. Francesco S. Pavone. Weinheim, Germany, Wiley-VCH Verlag GmbH & Co., 2010, ch. 7, pp. 115–164. 

6. Genina E. A., Bashkatov A. N., Tuchin V. V. Glucoseinduced optical clearing effects in tissues and blood. In: Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues. Ed. Valery V. Tuchin. Taylor & Francis Group LLC, CRC Press, 2009, ch. 21, pp. 657–692. 

7. Cheng H., Luo Q., Zeng S., Chen S., Luo W., Gong H. Hyperosmotic chemical agent’s effect on in vivo cerebral blood fl ow revealed by laser speckle. Appl. Opt., 2004, vol. 43, no. 31, pp. 5772–5777. 

8. Zhu D., Larin K., Luo Q., Tuchin V.V. Recent progress in tissue optical clearing. Laser & Photonics Reviews, 2013, vol. 7, no. 5, pp. 732–757. 

9. Cheshire E. C., Malcomson R.D.G., Joseph S., Biggs M.J.B., Adlam D., Rutty G. N. Optical clearing of the dura mater using glycerol: a reversible process to aid the post-mortem investigation of infant head injury. Forensic Science, Medicine, and Pathology, 2015, vol. 11, no. 3, pp. 395–404. 

10. Susaki E. A., Tainaka K., Perrin D., Kishino F., Tawara T., Watanabe T. M., Yokoyama C., Onoe H., Eguchi M., Yamaguchi S., Abe T., Kiyonari H., Shimizu Y., Miyawaki A., Yokota H., Ueda H. R. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014, vol. 157, pp. 726–739. 

11. Wang J., Zhang Y., Li P., Luo Q., Zhu D. Review : tissue optical clearing window for blood fl ow monitoring. IEEE J. Selected Topics in Quantum Electronics, 2014, vol. 20, no. 2, 6801112. 

12. Zhang Y., Zhang C., Zhong X., Zhu D. Quantitative evaluation of SOCS-induced optical clearing effi ciency of skull. Quantitative Imaging in Medicine and Surgery, 2015, vol. 5, no. 1, pp. 136–142. 

13. Genina E. A., Bashkatov A. N., SemyachkinaGlushkovskaya O. V., Tuchin V. V. Optical clearing of cranial bone by multicomponent immersion solutions and cerebral venous blood flow visualization. Izv. Saratov Univ. (N.S.), Ser. Physics, 2017, vol. 17, iss. 2, pp. 98–110. DOI: https://doi.org/10.18500/1817-3020-2017-17-2-98-110 (in Russian). 

14. Genina E. A., Bashkatov A. N., Tuchin V. V. Optical clearing of cranial bone. Advances in Optical Technologies, 2008, vol. 2008, 267867.

15. Bashkatov A. N., Genina E. A., Sinichkin Yu. P., Kochubey V. I., Lakodina N. A., Tuchin V. V. Glucose and mannitol diffusion in human dura mater. Biophys. J., 2003, vol. 85, no. 5, pp. 3310–3318. 

16. Genina E. A., Bashkatov A. N., Kochubey V. I., Tuchin V. V. Optical clearing of human dura mater. Optics and Spectroscopy, 2005, vol. 98, no. 3, pp. 470–476. 

17. Yao L., Cheng H., Luo Q., Zhang W., Zeng S., Tuchin V. V. Control of rabbit dura mater optical properties with osmotical liquids. Proc. SPIE., 2002, vol. 4536, pp. 147–152. 

18. Genina E. A., Bashkatov A. N., Tuchin V. V. Optical clearing of human dura mater by glucose solutions. J. Biomed. Photonics & Eng., 2017, vol. 3, no. 1, 010309. 

19. Boas G. Immersion liquids increase optical penetration of brain tissue. Biophotonics Research, 2004, vol. 1, pp. 61–63. 

20. Mourant J. R., Freyer J. P., Hielscher A. H., Eick A. A., Shen D., Johnson T. M. Mechanisms of light scattering from biological cells relevant to non-invasive optical tissue diagnostics. Appl. Opt., 1998, vol. 37, no. 16, pp. 3586–3593. 

21. Tuchin V. V. Tissue optics: Light Scattering Methods and Instruments for Medical Diagnosis. 3rd ed. Bellingham, WA, USA, SPIE Press, 2015, vol. PM254. 934 p. (SPIE Tutorial Text in Optical Engineering). 

22. Genina E. A., Bashkatov A. N., Korobko A. A., Zubkova E. A., Tuchin V. V., Yaroslavsky I., Altshuler G. B. Optical clearing of human skin : comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt. 2008, vol. 13, no. 2, 021102. 

23. Yu T., Qi Y., Zhu J., Gong H., Luo Q., Zhu D. Elevatedtemperature-induced acceleration of PACT clearing process of mouse brain tissue. Scientifi c Reports, 2017, vol. 7, 38848. DOI: https://doi.org/10.1038/srep38848

24. Larin K. V., Ghosn M. G., Bashkatov A. N., Genina E. A., Trunina N. A., Tuchin V. V. Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. IEEE Journal of Selected Topics in Quantum Electronics, 2012, vol. 18, no. 3, pp. 1244–1259. 

25. Genina E. A., Bashkatov A. N., Sinichkin Yu. P., Tuchin V. V. Optical clearing of the eye sclera in vivo caused by glucose. Quantum Electronics, 2006, vol. 36, no. 12, pp. 1119–1124. 

26. Richardson D. S., Lichtman J. W. Clarifying tissue clearing. Cell. 2015, vol. 162, pp. 246–257. 

27. Yu T., Qi Y., Wang J., Feng W., Xu J., Zhu J., Yao Y., Gong H., Luo Q., Zhu D. Rapid and prodium iodidecompatible optical clearing method for brain tissue based on sugar/sugar-alcohol. J. Biomed. Opt., 2016, vol. 21, no. 8, 081203. 

28. Silvestri L., Mascaro A.L.A., Lotti J., Sacconi L., Pavone F. S. Advanced optical techniques to explore brain structure and function. Journal of Innovative Optical Health Sciences, 2013, vol. 6, no. 1, 1230002. 

29. d’Esposito A., Nikitichev D., Desjardins A., WalkerSamuel S., Lythgoe M. F. Quantifi cation of light attenuation in optically cleared mouse brains. J. Biomed. Opt., 2015, vol. 20, no. 8. 080503. 

30. Hama H., Kurokawa H., Kawano H., Ando R., Shimogori T., Noda H., Fukami K., Sakaue-Sawano A., Miyawaki A. Scale: a chemical approach for fl uorescence imaging and reconstruction of transparent mouse brain. Nature Neuroscience, 2011, vol. 14, no. 11, pp. 1481–1488. 

31. Pirie A. van Heiningen R. Biochemistry of the eye. Blackwell Scientifi c Publications, 1956. 323 p. 

32. Huang Y., Meek K. M. Swelling studies on the cornea and sclera: the effects of pH and ionic strength. Biophysical J. 1999, vol. 77, pp. 1655–1665. 

33. Rosentul M. A. Obshchaia terapiia kozhnykh boleznei [General therapy of skin diseases]. Moscow: Meditsina, 1970. 470 p. (in Russian). 

34. Bashkatov A. N., Genina E. A., Tuchin V. V. Measurement of glucose diffusion coeffi cients in human tissues. In: Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues. Ed. Valery V. Tuchin. Taylor & Francis Group LLC, CRC Press, 2009, ch. 19, pp. 587–621. 

35. Alves L. A., Silva J. B. A., Giulietti M. Solubility of D-glucose in water and ethanol/water mixtures. J. Chem. Eng. Data. 2007, vol. 52, no. 6, pp. 2166–2170. 

36. Berezov T. T., Korovkin B. F. Biologicheskaia khi miia [Biological chemistry]. Moscow, Meditsina, 1998. 704 с. (in Russian). 

37. Ravich-Szherbo M. I., Novikov V. V. Fizicheskaia i kolloidnaia khimiia [Physical and colloid chemistry]. Moscow, Vysshaya Shkola, 1975. 255 p. (in Russian). 

38. Culav E. M., Clark C. H., Merrilees M. J. Connective tissue: matrix composition and its relevance to physical therapy. Physical Therapy, 1999, vol. 79, pp. 308–319. 

39. Malkin A. Y., Chalykh A. E. Diffuziia i viazkost’ polimerov. Metody izmereniia [Diffusion and viscosity of polymers. Measurement methods]. Moscow, Khimiia, 1979. 304 с. (in Russian). 

40. Chalykh A. E. Diffuziia v polimernykh sistemakh [Diffusion in polymer systems]. Moscow, Khimiia, 1987. 312 p. (in Russian). 

41. Maier J. S., Walker S. A., Fantini S., Franceschini M. A., Gratton E. Possible correlation between blood glucose concentration and the reduced scattering coeffi cient of tissues in the near infrared. Opt. Lett., 1994, vol. 19, no. 24, pp. 2062–2064. 

42. Schmitt J. M., Kumar G. Optical scattering properties of soft tissue: a discrete particle model. Appl. Opt., 1998, vol. 37, no. 13, pp. 2788–2797. 

43. Bohren C. F., Huffman D. R. Absorption and scattering of light by small particles. New York, John Willey & Sons Inc., 1983. 530 p. 

44. Cox J. L., Farrell R. A., Hart R. W., Langham M. E. The transparency of the mammalian cornea. Journal of Physiology, 1970, vol. 210, no. 3, pp. 601–616. 

45. Press W. H., Tuekolsky S. A., Vettering W. T., Flannery B. P. Numerical recipes in C: the art of scientifi c computing. Cambridge, Cambridge University Press, 1992. 994 p. 

46. Kotyk A., Janacek K. Membrane Transport: An Interdisciplinary Approach. New York, Plenum Press, 1977. 348 p. 

47. Katchalsky A. Polyelectrolyte gels. Prog. Biophys. Chem., 1954, vol. 4, pp. 1–59. 

48. Pitie A. The action of mustard gas on ox cornea collagen. Biochem. J., 1947, vol. 41, pp. 185–190. 

49. Molteni C., Parrinello M. Glucose in aqueous solution by fi rst principles molecular dynamics. Journal of the American Chemical Society, 1998, vol. 120, pp. 2168–2171. 

50. Bashkatov A. N., Genina E. A., Sinichkin Yu. P., Kochubei V. I., Lakodina N. A., Tuchin V. V. Estimation of the glucose diffusion coeffi cient in human eye sclera. Biophysics, 2003, vol. 48, no. 2, pp. 292–296.

51. Khalil E., Kretsos K., Kasting G.B. Glucose partition coeffi cient and diffusivity in the lower skin layers. Pharmaceutical Res. 2006, vol. 23, no. 6, pp. 1227–1234. 

52. Oliveira L. M., Carvalho M. I., Nogueira E., Tuchin V. V. The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Physics, 2013, vol. 23, no. 7, 075606. 

53. Tuchin V. V., Bashkatov A. N., Genina E. A., Sinichkin Yu. P., Lakodina N. A. In vivo investigation of the immersion-liquid-induced human skin clearing dynamics. Technical Physics Letters, 2001, vol. 27, no. 6, pp. 489–490. 

54. Tuchina D. K., Shi R., Bashkatov A. N., Genina E. A., Zhu D., Luo Q., Tuchin V. V. Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. J. Biophotonics, 2015, vol. 8, no. 4, pp. 332–346. 

55. Zhao Q. L., Si J. L., Guo Z. Y., Wei H. J., Yang H. Q., Wu G. Y., Xie S. S., Li X. Y., Guo X., Zhong H. Q., Li L. Q. Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography. Laser Physics Letters, 2011, vol. 8, no. 1, pp. 71–77. 

56. Ghosn M. G., Mashiatulla M., Mohamed M.A., Syed S., Castro-Chavez F., Morrisett J. D., Larin K.V. Time dependent changes in aortic tissue during cold storage in physiological solution. Biochimica et Biophysica Acta, 2011, vol. 1810, no. 5, pp. 555–560. 

57. Xiong H., Guo Z., Zeng C., Wang L., He Y., Liu S. Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice. J. Biomed. Opt. 2009, vol. 14, no. 2, 024029. 

58. Amsden B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules, 1998, vol. 31, no. 23, pp. 8382–8395. 

59. Beck R. E., Schultz J. S. Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry. Biochimica et Biophysica Acta, 1972, vol. 255, pp. 273–303.

Short text (in English): 
Full text (in Russian):