Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Ermakov A. V., Lengert E. V., Saveleva M. S., Sukhorukov G. B. Electrically Induced Opening of Composite PLA/SWCNT Microchambers for Implantable Drug Depot Systems. Izvestiya of Sarat. Univ. Physics. , 2020, vol. 20, iss. 4, pp. 311-314. DOI: 10.18500/1817-3020-2020-20-4-311-314

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 50)
Full text(En):
(downloads: 23)

Electrically Induced Opening of Composite PLA/SWCNT Microchambers for Implantable Drug Depot Systems

Ermakov Alexey Vadimovich, Saratov State University
Lengert Ekaterina Vladimirovna, Saratov State Medical University named after V. I. Razumovsky
Saveleva Mariia Sergeevna, Saratov State University
Sukhorukov Gleb Borisovich, Queen Mary University of London

Time- and site-specific release of bioactive compounds mediated by microcontainers immobilized on a surface is of high importance in a variety of tasks related to biomedicine and functional coatings. In the present work, we investigate arrays of hollow microchambers formed by composite shells based on a polylactic acid matrix and single-walled carbon nanotubes filler with high responsiveness towards electric current stimuli. The monitoring of the morphology changes reveals significant damages to the shells of microchambers formed by conductive composite material. The voltage of 3 V is shown to be sufficient to induce thermal damages to the microchambers. This study demonstrates the in-principle possibility to realize the opening of polylactic acid-based microchambers by application of low-power currents. The developed system opens a promising avenue for implantable delivery routes in a number of areas related to smart coatings, time and site-specific release. We believe these results will find application in the development of new implantable drug depot systems in biomedicine and cosmetology.

  1. Daly A. C., Kelly D. J. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials, 2019, vol. 197, pp. 194–206.
  2. Querido M. M., Aguiar L., Neves P., Pereira C. C., Teixeira J. P. Self-disinfecting surfaces and infection control. Colloids Surfaces B Biointerfaces, 2019, vol. 178, pp. 8–21.
  3. Shah N. J., Hyder M. N., Moskowitz J. S., Quadir M. A., Morton S. W., Seeherman H. J., Padera R. F., Spector M., Hammond P. T. Surface-Mediated Bone Tissue Morphogenesis from Tunable Nanolayered Implant Coatings. Sci. Transl. Med., 2013, vol. 5, pp. 191ra83‒191ra83.
  4. Kiryukhin M. V., Gorelik S. R., Man S. M., Subramanian G. S., Antipina M. N., Low H. Y., Sukhorukov G. B. Individually addressable patterned multilayer microchambers for site-specifi c release-on-demand. Macromol. Rapid Commun., 2013, vol. 34, pp. 87–93.
  5. Kiryukhin M. V., Lau H. H., Lim S. H., Salgado G., Fan C., Ng Y. Z., Leavesley D. I., Upton Z. Arrays of Biocompatible and Mechanically Robust Microchambers Made of Protein–Polyphenol–Clay Multilayer Films. ACS Biomater. Sci. Eng., 2020, pp. acsbiomaterials.0c00973.
  6. Ermakov A. V., Kudryavtseva V. L., Demina P., Verkhovskii R., Zhang J., Lengert E., Sapelkin A., Goryacheva I. Y., Sukhorukov G. Site-specific release of reactive oxygen species from ordered arrays of microchambers based on polylactic acid and carbon nanodots. J. Mater. Chem. B, 2020, vol. 8, pp. 7977–7986.
  7. Gai M., Frueh J., Tao T., Petrov A. V., Petrov V. V., Shesterikov E. V., Tverdokhlebov S. I., Sukhorukov G. B. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound. Nanoscale, 2017, vol. 9, pp. 7063‒7070.
  8. Ermakov A., Lim S. H., Gorelik S., Kauling A. P., de Oliveira R. V. B., Castro Neto A. H., Glukhovskoy E., Gorin D. A., Sukhorukov G. B., Kiryukhin M. V. Polyelectrolyte-Graphene Oxide Multilayer Composites for Array of Microchambers which are Mechanically Robust and Responsive to NIR Light. Macromol. Rapid Commun., 2019, vol. 40, pp. 1700868.
  9. Zhang J., Sun R., DeSouza-Edwards A. O., Frueh J., Sukhorukov G. B. Microchamber arrays made of biodegradable polymers for enzymatic release of small hydrophilic cargos. Soft Matter, 2020, vol. 16, pp. 2266–2275.
  10. Khan A. N., Ermakov A., Sukhorukov G., Hao Y. Radio frequency controlled wireless drug delivery devices. Appl. Phys. Rev., 2019, vol. 6, pp. 041301.
  11. Talebian S., Foroughi J., Wade S. J., Vine K. L., Dolatshahi-Pirouz A., Mehrali M., Conde J., Wallace G. G. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. Adv. Mater., 2018, vol. 30, pp. 1706665.
  12. Ermakov A. V., Lengert E. V., Venig S. B. Nanomedicine and Drug Delivery Strategies for Theranostics Applications. Izv. Saratov Univ. (N. S.), Ser. Physics, 2020, vol. 20, iss. 2, pp. 116–124. DOI: https://doi.org/10.18500/1817-3020-2020-20-2-116-124
  13. Sindeeva O. A., Gusliakova O. I., Inozemtseva O. A., Abdurashitov A. S., Brodovskaya E. P., Gai M., Tuchin V. V., Gorin D. A., Sukhorukov G. B. Effect of a Controlled Release of Epinephrine Hydrochloride from PLGA Microchamber Array: In Vivo Studies. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 37855–37864.
  14. Maulvi F. A., Lakdawala D. H., Shaikh A. A., Desai A. R., Choksi H. H., Vaidya R. J., Ranch K. M., Koli A. R., Vyas B. A., Shah D. O. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J. Control. Release, 2016, vol. 226, pp. 47–56.
  15. Rodrigues de Azevedo C., von Stosch M., Costa M. S., Ramos A. M., Cardoso M. M., Danhier F., Préat V., Oliveira R. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int. J. Pharm., 2017, vol. 532, pp. 229–240.