Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Ten G. N., Gerasimenko A. Y., Kochubey V. I., Slepchenkov M. M., Shcherbakova N. E., Glukhova O. E. Effect of the mechanism of interaction between single-layer carbon nanotubes of different diameters and albumin in solid nanocomposites on fluorescence spectra. Izvestiya of Sarat. Univ. Physics. , 2022, vol. 22, iss. 3, pp. 207-219. DOI: 10.18500/1817-3020-2022-22-3-207-219

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 168)
Article type: 

Effect of the mechanism of interaction between single-layer carbon nanotubes of different diameters and albumin in solid nanocomposites on fluorescence spectra

Ten Galina Nikolaevna, Saratov State University
Gerasimenko Aleksandr Yur'evich, National Research University «Moscow Institute of Electronic Technology»
Kochubey Vyacheslav Ivanovich, Saratov State University
Slepchenkov Mikhail Mikhailovich, Saratov State University
Shcherbakova Natalia Evgen'evna, Russian Research Anti-Plague Institute «Microbe»
Glukhova Olga Evgen'evna, Saratov State University

Background and Objectives: Experimental registration of fluorescence spectra in the visible region of solid nanocomposites based on bovine serum albumin and single-walled carbon nanotubes, depending on their diameter and concentration, has been performed. Results: For nanocomposites with “thick” (average diameter 4.10 nm) nanotubes, fluorescence quenching is observed in the experimental fluorescence spectra with an increase in their concentration (from 0.001 to 0.01 g/L) under laser excitation with wavelengths of 240, 270 and 290 nm. In the case of “thin” (average diameter 1.04 nm) nanotubes in the experimental spectra of the nanocomposite, the fluorescence intensity increases by an order of magnitude as compared with the spectra of both albumin and nanotubes. Using molecular modeling, it has been shown that the surface of “thin” nanotubes forming covalent bonds with aspartic and glutamic amino acids located on the surface of albumin takes a wave-like shape. Conclusions: Electron motion is localized inside small regions of thin nanotubes, leading to the formation of “quantum dots”, which is the cause for a significant increase in the fluorescence intensity of solid nanocomposites of albumin-“thin” nanotubes.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the State task (project No. FSRR-2020-0004).
  1. Seredych M., Mikhalovska L., Mikhalovsky S., Gogotsi Y. Adsorption of Bovine Serum Albumin on Carbon-Based Materials. J. Carbon Research, 2018, vol. 4, iss. 3, pp. 1–14. https://doi.org/10.3390/c4010003
  2. Ray S. C., Jana N. R. Carbon Nanomaterials for Biological and Medical Applications. Elsevier, Amsterdam, The Netherlands, 2017. 231 p.
  3. Service R. F. Nanomaterials Show Signs of Toxicity. Science, 2003, vol. 300, pp. 243. https://doi.org/10.1126/science.300.5617.243a
  4. Brumfiel G. A little knowledge. Nature, 2003, vol. 424, pp. 246. https://doi.org/10.1038/424246a
  5. Lam C. W., James J. T., McCluskey R., Hunter R. L. Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation. Toxicol. Sci., 2004, vol. 77, pp. 126–134. https://doi.org/10.1093/toxsci/kfg243
  6. Wang H. F., Wang J., Deng X. Y., Sun H. F., Shi Z. J., Gu Z. N., Liu Y. F., Zhao Y. L. Bio distribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol., 2004, vol. 4, pp. 1019–1024. https://doi.org/10.1166/jnn.2004.146
  7. Anand A. S., Prasad D. N., Singh S. B., Kohli E. Chronic exposure of zinc oxide nanoparticles causes deviant phenotype in Drosophila melanogaster. Journal of Hazardous Materials, 2017, vol. 327, pp. 180–186. https://doi.org/10.1016/J.JHAZMAT.2016.12.040
  8. Xu Y., Luo Z., Li S., Li W., Zhang X., Zuo Y. Y., Huang F., Yue T. Perturbation of the pulmonary surfactant monolayer by single-walled carbon nanotubes : A molecular dynamics study. Nanoscale, 2017, vol. 9, pp. 10193–10205. https://doi.org/10.1039/C7NR00890B
  9. Erbis S., Ok Z., Isaacs J. A., Benneyan J. C., Kamarthi S. Review of research trends and methods in nano environmental, health, and safety risk analysis. Risk Analysis, 2016, vol. 36, pp. 1644. https://doi.org/10.1111/RISA. 12546
  10. Karajanagi S. S., Yang H., Asuri P., Sellitto E., Dordick J. S., Kane R. S. Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir, 2006, vol. 22, pp. 1392–1395. https://doi.org/10.1021/la0528201
  11. Matsuura K., Saito T., Okazaki T., Ohshima S., Yumura M., Iijima S. Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem. Phys. Lett., 2006, vol. 429, pp. 497–502. https://doi.org/10.1016/j.cplett.2006.08.044
  12. Wang X., Xia T., Ntim S. A., Ji Z., George S., Meng H., Zhang H., Castranova V., Mitra S., Nel A. E. Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells. ACS Nano, 2010, vol. 4, pp. 7241–7252. https://doi.org/10.1021/nn102112b
  13. Azamian B. R., Davis J. J., Coleman K. S., Bagshaw C. B., Green M. L. H. Bioelectrochemical Single-Walled Carbon Nanotubes. J. Am. Chem. Soc., 2002, vol. 124, pp. 12664–12665. https://doi.org/10.1021/ja0272989
  14. Krummel T., Hannedouche T. Clinical potentials of adsorptive dialysis membranes. Blood Purif., 2013, vol. 35, no. 2, pp. 1–4. https://doi.org/10.1159/000350835
  15. Sengupta B., Gregory W. E., Zhu J., Dasetty S., Karakaya M., Brown J. M., Rao A. M., Barrows J. K., Sarupria S., Podila R. Influence of carbon nanomaterial defects on the formation of protein corona. RSC Adv., 2015, vol. 5, pp. 82395–82402. https://doi.org/10.1039/C5RA15007H
  16. Hai Y., Qu K., Liu Y., Zhao C. Binding mechanism of single-walled carbon nanotubes (SWCNTs) to serum albumin : Spectroscopy and molecular modelling exploration. Environ. Chem., 2018, vol. 15, pp. 278–285. https://doi.org/10.1071/en18043
  17. Sui J., Tleugabulova D., Brennan J. D. Direct and indirect monitoring of peptide-silica interactions using time-resolved fluorescence anisotropy. Langmuir, 2005, vol. 21, pp. 4996–5001. https://doi.org/10.1021/LA0473963
  18. Li S., He H., Chen Z., Zha J., Pham-Huy C. Fluorescence study on the interactions between carbon nanotubes and bovine serum albumin. Spectrosc. Spect. Anal., 2010, vol. 30, no. 10, pp. 2689–2692. https://doi.org/10.1155/2013/578290
  19. Zha J., He H., Liu T., Li S., Jiao Q. Studies on the interaction of gatifloxacin with bovine serum albumin in the presence of carbon nanotubes by fluorescence spectroscopy. Spectrosc. Spect. Anal., 2011, vol. 31, no. 1, pp. 149–153. https://doi.org/10.3964/j.issn.1000-0593(2011)01-0149-05
  20. Li L., Lin R., He H., Jiang L., Gao M. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin. Spectrochimica Acta A, 2013, vol. 105, pp. 45–51. https://doi.org/10.1016/j.saa.2012.11.111
  21. Guan Y., Zhang H., Wang Y. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin. Spectrochimica Acta A, 2014, vol. 124, pp. 556–563. https://doi.org/10.1016/j.saa.2014. 01.058
  22. Jianguo Tang J., Xu Q. Organically Structured Carbon Nanotubes for Fluorescence. Texas, A&M University, Carbon Nanotubes – Growth and Applications, 2011, pp. 211–240. https://doi.org/10.5772/16791
  23. Lee A. J., Wang X., Carlson L. J., Smyder J. A., Loesch B., Tu X., Zheng M., Krauss T. D. Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett., 2011, vol. 11, pp. 1636–1640. https://doi.org/10.1021/Nl200077T
  24. Zhao X., Liu R., Chi Z., Teng Y., Qin P. New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes : Comprehensive spectroscopic studies. J. Phys. Chem. B, 2010, vol. 114, pp. 5625–5631. https://doi.org/10.1021/jp100903x
  25. Harrison B. S., Atala A. Carbon nanotube applications for tissue engineering. Biomaterials, 2007, vol. 28, pp. 344–353. https://doi.org/10.1016/j.biomaterials.2006. 07.044
  26. Zanello L. P., Zhao B., Hu H. Bone Cell Proliferation on Carbon Nanotubes. Nano Lett., 2006, vol. 6, iss. 3, pp. 562–567. https://doi.org/10.1021/nl051861e
  27. Andreeva I. V., Bagratashvili V. N., Ichkitidze L. P., Podgaetsky V. M., Savransky V. V., Selishchev S. V. Determination of mechanical properties of biocompatible three-dimensional nanocomposites manufactured using laser methods. Meditsinskaia tekhnika [Biomedical Engineering], 2009, vol. 43, no. 6, pp. 241–248.
  28. Ageeva S. A., Lysenko V. I., Gerasimenko A. Yu., Ichkitidze L. P., Podgaetsky V. M., Selishchev S. V. Studies of biological compatibility of nanocomposites created by the laser method. Meditsinskaia tekhnika [Biomedical Engineering], 2010, no. 6, pp. 35–39 (in Russian).
  29. Ichkitidze L. P., Selishchev S. V., Gerasimenko A. Yu., Podgaetsky V. M. Mechanical properties of bulk nanocomposite biomaterial. Meditsinskaia tekhnika [Biomedical Engineering], 2015, no. 5, pp. 40–43 (in Russian).
  30. Gerasimenko A. Yu., Dedkova A. A., Ichkitidze L. P., Podgaetsky V. M. A study of preparation techniques and properties of bulk nanocomposites based on aqueous albumin dispersion. Optics and Spectroscopy, 2013, vol. 115, no. 2, pp. 283–289. https://doi.org/10.1134/S0030400X13080092
  31. Ichkitidze L. P., Podgaetsky V. M., Ponomareva O. V., Selishchev S. V. Mechanical properties of a bulk nanocomposite obtained by laser irradiation. Izvestiya vuzov. Physics, 2010, no. 3-2, pp. 125–129 (in Russian).
  32. Gerasimenko A. Y., Ryabkin D. I., Ichkitidze L. P., Ten G. N., Shcherbakova N. E., Morozova E. A. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, vol. 222, art. no. 117682. https://doi.org/https://doi.org/10.1016/j. saa.2019.117682
  33. Ten G. N., Gerasimenko A. Yu., Shcherbakova N. E., Baranov V. I. Interpretation of IR and raman spectra of albumin. Izvestiya of Saratov University. Physics, 2019, vol. 19, iss. 1, pp. 43–57. https://doi.org/10.18500/1817- 3020-2019-19-1-43-57
  34. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09. Gaussian Inc., Wallingford CT, 2009. 394 p.
  35. Rambidi N. G. Struktura i svojstva nanorazmernykh obrazovanij. Realii segodnyashnej nanotekhnologii : uchebnoe posobie [Structure and Properties of Nanoscale Formations. The Realities of Today’s Nanotechnology : tutorial]. Dolgoprudny, Izdatel’skii Dom “Intellekt”, 2011. 376 p. (in Russian).
  36. Das R., Rajender G., Giri P. K. Anomalous Fluorescence Enhancement and Fluorescence Quenching of Graphene Quantum Dots by Single Walled Carbon Nanotubes. Phys. Chem. Chem. Phys., 2018, vol. 20, pp. 4527–4537. https://doi.org/10.1039/C7CP06994D
  37. Nanotrubki nauchili svetit’sya eshche yarche (Nanotubes Have Learned to Glow Even Brighter). Available at: https://maxpark.com/community/603/content/2144260 (accessed 10 June 2021) (in Russian).
  38. Shin H.-J., Clair S., Kim Y., Kawai M. Substrate-induced array of quantum dots in a single-walled carbon nanotube. Nat. Nanotechnol., 2009, vol. 4, pp. 567–570. https://doi.org/10.1038/NNANO.2009.182