Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Khivintsev Y. V., Vysotskii S. L., Dzhumaliev A. S., Filimonov Y. A. Effect of the finite conductivity of a metal on properties of a magnetostatic backward volume wave in layered metallized structures. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 1, pp. 14-23. DOI: 10.18500/1817-3020-2023-23-1-14-23, EDN: AMPCCB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 126)
Article type: 

Effect of the finite conductivity of a metal on properties of a magnetostatic backward volume wave in layered metallized structures

Khivintsev Yuri Vladimirovich, Saratov State University
Vysotskii Sergei Lvovich, Saratov State University
Dzhumaliev Aleksandr Sergeevich, Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
Filimonov Yuri Aleksandrovich, Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Background and Objectives: Layered structures based on ferrite and metal films are actively studied in magnonics. Usually, the effects associated with the finite conductivity of the metal are not taken into account. The aim of this work was to investigate the influence of the thickness of a metal with finite conductivity on the dispersion and damping of a magnetostatic backward volume wave (MSBVW) in the ferrite-metal and ferrite-insulator-metal structures. Materials and Methods: The dispersion equation for MSBVW was derived using Maxwell’s equations in the magnetostatic approximation, the Landau-Lifshitz equation, and standard electrodynamic boundary conditions. Calculations were performed for the structures based on yttrium iron garnet (YIG) films with metal resistivity characteristic of silver, indium, and copper. Results of the calculation we compared with results of an experiment on MSBVW propagation in a YIG film metallized by copper performed using a vector network analyzer and microstrip antennas for excitation and detection of the MSBVW. Results and Conclusions: It was found that, the metallization always suppresses MSBVW propagation, and at metal thicknesses t ≥ 10 nm, the ohmic losses due to the metal significantly exceed the intrinsic magnetic losses in the ferrite. It was also shown that the gap between the ferrite and metal can be used to suppress the long-wavelength part of the MSBVW spectrum.

This study was supported by the Russian Science Foundation (project no. 22-22-00563).
  1. Kruglyak V. V., Demokritov S. O., Grundler D. Magnonics. J. Phys. D : Appl. Phys., 2010, vol. 43, no. 26, article no. 264001. https://doi.org/10.1088/0022-3727/43/26/264001
  2. Chumak A. V., Vasyuchka V. I., Serga A. A., Hille-brands B. Magnon spintronics. Nature Physics, 2015, vol. 11, no. 6, pp. 453–461. https://doi.org/10.1038/nphys3347
  3. Geiler M., Gillette S., Shukla M., Kulik P., Geiler A. L. Microwave magnetics and considerations for systems design. IEEE Journal of Microwaves, 2021, vol. 1, no. 1, pp. 438–446. https://doi.org/10.1109/JMW.2020.3035452
  4. Barman A., Gubbiotti G., Ladak S., Adeyeye A. O., Krawczyk M., Gräfe J., Adelmann C., Cotofana S., Naeemi A., Vasyuchka V. I., Hillebrands B., Nikitov S. A., Yu H., Grundler D., Sadovnikov A. V., Grachev A. A., Sheshukova S. E., Duquesne J.-Y., Marangolo M., Csaba G., Porod W., Demidov V. E., Urazhdin S., Demokritov S. O., Albisetti E., Petti D., Bertacco R., Schultheiss H., Kruglyak V. V., Poimanov V. D., Sahoo S., Sinha J., Yang H., Münzenberg M., Moriyama T., Mizukami S., Landeros P., Gallardo R. A., Carlotti G., Kim J.-V., Stamps R. L., Camley R. E., Rana B., Otani Y., Yu W., Yu T., Bauer G. E. W., Back C., Uhrig G. S., Dobrovolskiy O. V., Budinska B., Qin H., van Dijken S., Chumak A. V., Khitun A., Nikonov D. E., Young I. A., Zingsem B. W., Winklhofer M. The 2021 magnonics roadmap. J. Phys : Cond. Matt., 2021, vol. 33, no. 41, article no. 413001. https://doi.org/10.1088/1361-648X/abec1a
  5. Serga A. A., Chumak A. V., Hillebrands B. YIG magnonics. J. Phys. D : Appl. Phys., 2010, vol. 43, no. 26, article no. 264002. https://doi.org/10.1088/0022-3727/43/26/264002
  6. Nikitov S. A., Safin A. R., Kalyabin D. V., Sadovnikov A. V., Beginin E. N., Logunov M. V., Morozova M. A., Odintsov S. A., Osokin S. A., Sharaevskaya A. Yu., Sharaevsky Yu. P., Kirilyuk A. I. Dielectric magnonics: From gigahertz to terahertz. Physics-Uspekhi, 2020, vol. 63, no. 10, pp. 945–974. https://doi.org/10.3367/UFNe.2019.07.038609
  7. Hartemann P. Magnetostatic wave planar YIG devices. IEEE Trans. Magn., 1984, vol. 20, no. 5, pp. 1272–1277. https://doi.org/10.1109/TMAG.1984.1063494
  8. Bobyl A., Suris R., Karmanenko S., Semenov A., Melkov A., Konuhov S., Olshevski A. The ferrite/superconductor layered structure for tunable microwave devices. Physica C : Superconductivity, 2002, vol. 372, pp. 508–510. https://doi.org/10.1016/S0921-4534(02)00734-7
  9. Zhang Y., Cai D., Zhao C., Zhu M., Gao Y., Chen Y., Liang X., Chen H., Wang J., Wei Y., He Y., Dong C., Sun N., Zaeimbashi M., Yang Y., Zhu H., Zhang B., Huang K., Sun N. X. Nonreciprocal isolating bandpass filter with enhanced isolation using metallized ferrite. IEEE Trans. MTT, 2020, vol. 68, no. 12, pp. 5307–5316. https://doi.org/10.1109/TMTT.2020.3030784
  10. Vugalter G. A., Korovin A. G. Total internal reflection of backward volume magnetostatic waves and its application for waveguides in ferrite films. J. Phys. D : Appl. Phys., 1998, vol. 31, pp. 1309–1319. https://doi.org/10.1088/0022-3727/31/11/004
  11. Khivintsev Y. V., Dudko G. M., Sakharov V. K., Nikulin Y. V., Filimonov Y. A. Propagation of spin waves in microstructures based on yttrium-iron garnet films decorated by a ferromagnetic metal. Physics Solid State, 2019, vol. 61, pp. 1614–1621. https://doi.org/10.1134/S1063783419090129
  12. Ustinov A. B., Grigor’eva N. Y., Kalinikos B. A. Observation of spin-wave envelope solitons in periodic magnetic film structures. JETP Letters, 2008, vol. 88, pp. 31–35. https://doi.org/10.1134/S0021364008130079
  13. Inoue M., Baryshev A., Takagi H., Lim P. B., Hatafuku K., Noda J., Togo K. Investigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperature. Appl. Phys. Lett., 2011, vol. 98, article no. 132511. https://doi.org/10.1063/1.3567940
  14. Kanazawa N., Goto T., Hoong J. W., Buyandalai A., Takagi H., Inoue M. Metal thickness dependence on spin wave propagation in magnonic crystal using yttrium iron garnet. J. Appl. Phys., 2015, vol. 117, no. 17, article no. 17E510. https://doi.org/10.1063/1.4916815
  15. Vysotskii S. L., Khivintsev Yu. V., Filimonov Yu. A., Nikitov S. A., Stognii A. I., Novitskii N. N. Surface spin waves in one-dimensional magnonic crystals with two spatial periods. Tech. Phys. Lett., 2015, vol. 41, pp. 1099–1102. https://doi.org/10.1134/S1063785015110267
  16. Morozova M. A., Sadovnikov A. V., Matveev O. V., Sharaevskaya A. Yu., Sharaevskii Yu. P., Nikitov S. A. Band structure formation in magnonic Bragg gratings superlattice. J. Phys. D : Appl. Phys., 2020, vol. 53, no. 39, article no. 395002. https://doi.org/10.1088/1361-6463/ab95c0 
  17. Beginin E. N., Filimonov Y. A., Pavlov E. S., Vysotskii S. L., Nikitov S. A. Bragg resonances of magnetostatic surface spin waves in a layered structure: Magnonic crystal-dielectric-metal. Appl. Phys. Lett., 2012, vol. 100, no. 25, article no. 252412.
  18. Mruczkiewicz M., Krawczyk M., Gubbiotti G., Tacchi S., Filimonov Y. A., Kalyabin D. V., Lisenkov I. V., Nikitov S. A. Nonreciprocity of spin waves in metallized magnonic crystal. New J. Phys., 2013, vol. 15, article no. 113023. https://doi.org/10.1088/1367-2630/15/11/113023
  19. Morozova M. A., Matveev O. V. Resonant and nonlinear phenomena during the propagation of magnetostatic waves in multiferroid, semiconductor and metallized structures based on ferromagnetic films and magnonic crystals. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, no. 5, pp. 534–553. https://doi.org/10.18500/0869-6632-003003
  20. Chumak A. V., Serga A. A., Jungfleisch M. B., Neb R., Bozhko D. A., Tiberkevich V. S., Hillebrands B. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett., 2012, vol. 100, no. 8, article no. 082405. https://doi.org/10.1063/1.3689787
  21. Balinsky M., Ranjbar M., Haidar M., Dürrenfeld P., Khartsev S., Slavin A., Åkerman J., Dumas R. K. Spin pumping and the inverse spin-hall effect via magnetostatic surface spin-wave modes in yttrium-iron garnet/platinum bilayers. IEEE Magn. Lett., 2015, vol. 6, article no. 3000604. https://doi.org/10.1109/LMAG.2015.2471276
  22. Balinskiy M., Chiang H., Gutierrez D., Khitun A. Spin wave interference detection via inverse spin Hall effect. Appl. Phys. Lett., 2021, vol. 118, no. 24, article no. 242402. https://doi.org/10.1063/5.0055402
  23. Nikulin Y. V., Seleznev M. E., Khivintsev Y. V., Sakharov V. K., Pavlov E. S., Vysotskii S. L., Kozhevnikov A. V., Filimonov Y. A. EMF generation by propagating magnetostatic surface waves in integrated thin-film Pt/YIG structure. Semiconductors, 2020, vol. 54, no. 12, pp. 1721–1724. https://doi.org/10.1134/S106378262012026X
  24. Seleznev M. E., Nikulin Y. V., Khivintsev Y. V., Vysotskii S. L., Kozhevnikov A. V., Sakharov V. K., Dudko G. M., Pavlov E. S., Filimonov Y. A. Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG-Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, no. 5, pp. 617–643. https://doi.org/10.18500/0869-6632-003008
  25. Veselov A. G., Vysotskii S. L., Kazakov G. T., Sukharev A. G., Filimonov Y. A. Magnetostatic surface waves in metallized YIG films. Radiotekh. Elektron., 1994, vol. 39, no. 12, pp. 2067–2074 (in Russian).
  26. Filimonov Y. A., Khivintsev Y. V. Interaction between a magnetostatic surface wave and bulk elastic waves in a metallized ferromagnet-dielectric structure. J. Commun. Technol. Electron., 2002, vol. 47, no. 8, pp. 910–915.
  27. Bunyaev S. A., Serha R. O., Musiienko-Shmarova H. Y., Kreil A. J., Frey P., Bozhko D. A., Vasyuchka V. I., Verba R. V., Kostylev M., Hillebrands B., Kakazei G. N., Serga A. A. Spin-wave relaxation by eddy currents in Y3Fe5O12/Pt bilayers and a way to suppress it. Phys. Rev. Appl., 2020, vol. 14, no. 2, article no. 024094. https://doi.org/10.1103/PhysRevApplied.14.024094
  28. Xu J., Liao Z., Wang Q., Liu B., Tang X., Zhong Z., Zhang L., Zhang Y., Zhang H., Jin L. Enhancement of lowk spin-wave transmission efficiency with a record-high group velocity in YIG/nonmagnetic metal heterojunctions. Advanced Electronic Materials, 2022, article no. 2201061. https://doi.org/10.1002/aelm.202201061
  29. Serha R. O., Bozhko D. A., Agrawal M., Verba R. V., Kostylev M., Vasyuchka V. I., Hillebrands B., Serga A. A. Low-damping spin-wave transmission in YIG/Pt-interfaced structures. Advanced Materials Interfaces, 2022, vol. 9, no. 36, article no. 2201323. https://doi.org/10.1002/admi.202201323
  30. Gulyaev Y. V., Ogrin Yu. F., Polzikova N. I., Raevskii A. O. Absorption of volume spin waves in magnet-superconductor structures. Physics of the Solid State, 1997, vol. 39, pp. 1451–1453.
  31. Chakrabarti S., Bhattacharya D. Magnetostatic volume waves in lossy YIG film backed by a metal of finite conductivity. IEEE Trans. MTT, 1999, vol. 47, no. 7, pp. 1132–1134. https://doi.org/10.1109/22.775448
  32. Damon R. W., Eshbach J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids, 1961, vol. 19, no. 3-4, pp. 308–320. https://doi.org/10.1016/0022-3697(61)90041-5
  33. Bykov Y. A., Karpukhin S. D., Gazukina E. I. About some features of the structure and properties of metallic “thin” films. Metallovedenie i termicheskaya obrabotka metallov, 2000, no. 6, pp. 45–47 (in Russian).