Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Kalyanov A. L., Lychagov V. V., Smirnov I. V., Ryabukho V. P. Effect of Spectral Properties of Image Sensor on Interference Experiment. Izvestiya of Sarat. Univ. Physics. , 2011, vol. 11, iss. 2, pp. 25-30. DOI: 10.18500/1817-3020-2011-11-2-25-30

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 59)
Language: 
Russian
Heading: 
UDC: 
535.412: 535.417: 681.723.26

Effect of Spectral Properties of Image Sensor on Interference Experiment

Autors: 
Kalyanov Aleksandr Leont'evna, Saratov State University
Lychagov Vladimir Valer'evich, Saratov State University
Smirnov Ilya Vladimirovich, Saratov State University
Ryabukho Vladimir Petrovich, Saratov State University
Abstract: 

Influence of spectral properties of monochrome image sensor on spectrum of detecting radiation in fullfield lowcoherence microinterferometer is investigated. Dependence of interference pulse shape and period of interference fringes on the spectrum is shown. Simulated results and experimental measurements of integral transmission spectrum of Linnik microinterferometer with the silicon monochrome image sensor and thermal light source are presented.

Reference: 
  1. Optical coherence tomography : technology and applications / eds. W. Drexler, J. G. Fujimoto. New York : Springer, 2008. 1330 p.
  2. Torok P., Kao F.-J. Techniques and Advanced Systems // Optical Imaging and Microscopy. New York : Springer Berlin Heidelberg, 2007. 499 p.
  3. Rosen J., Takeda M. Longitudinal spatial coherence applied for surface profi lometry // Appl. Opt. 2000. Vol. 39, №. 23. P. 4107–4111.
  4. Рябухо В. П., Кальянов А. Л., Лычагов В. В., Лякин Д. В. Влияние ширины контура частотного спектра на поперечную когерентность оптического поля // Опт. и спектр. 2010. Т. 108, № 6. С. 979–984.
  5. Рябухо В. П., Лякин Д. В., Лычагов В. В. Продольная когерентность оптического поля протяженного пространственно некогерентного источника // Компьютерная оптика. 2009. Т. 33, № 2. С. 175–184.
  6. Рябухо В. П., Лякин Д. В., Лычагов В. В. Длина продольной когерентности оптического поля // Опт. и спектр. 2009. Т. 107, № 2. С. 296–301.
  7. Ohmi M., Haruna M. Ultra-high resolution optical coherence tomography (oct) using a halogen lanlp as the light source // Opt. Review. 2003. Vol. 10, № 5. P. 478– 481.
  8. Brundavanam M. M., Viswanathan N. K., Rao D. N. Effect of input spectrum on the spectral switch characteristics in a white-light Michelson interferometer // J. Opt. Soc. Amer. 2009. Vol. 26, № 12. P. 2592–2599.
  9. Bajraszewski T., Wojtkowski M., Szkulmowski M., Szkulmowska A., Huber R., Kowalczyk A. Improved spectral optical coherence tomography using optical frequency comb // Opt. Exp. 2008. Vol. 16, № 6. P. 4163–4176.
  10. Борн Э., Вольф Э. Основы оптики. М., 1973. 760 с. 11. Мандель Л., Вольф Э. Оптическая когерентность и квантовая оптика. М. , 2000. 896 с.