Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Ponomaryova T. S., Olomskaya V. V., Novikova A. S., Goryacheva I. Y. Effect of pH and ionic strength on the photoluminescence of size-fractionated AgInS2/ZnS quantum dots. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 3, pp. 238-244. DOI: 10.18500/1817-3020-2023-23-3-238-244, EDN: LJMYAA

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
29.09.2023
Full text:
(downloads: 107)
Language: 
English
Article type: 
Article
UDC: 
53.044
EDN: 
LJMYAA

Effect of pH and ionic strength on the photoluminescence of size-fractionated AgInS2/ZnS quantum dots

Autors: 
Ponomaryova Tatiana Sergeevna, Saratov State University
Olomskaya Vera Vladimirovna, Saratov State University
Novikova Anastasiya S., Saratov State University
Goryacheva Irina Yurievna, Saratov State University
Abstract: 

Background and Objectives: Cellular labeling with fluorescent molecules appears to be one of the key methods of cell biology that continues to evolve with the advent of new fluorescent probes possessing unique properties. Ternary AgInS2/ZnS quantum dots occupy a special position comparedto other fluorescentmolecules duetotheir size-adjustable photoluminescence combined with broadband excitation and long emission lifetime. For the use of quantum dots of AgInS2/ZnS composition as a fluorescent probe in in vitro applications, they should have low physiological toxicity and good stability in physiological pH range. The objective of this work is therefore to evaluate the change of photoluminescent properties of AgInS2/ZnS quantum dots with changing pH of the medium and ionic strength. Materials and Methods: To evaluate the effect of pH and ionic strength on the photoluminescence properties of AgInS2/ZnS quantum dots, a size-selective precipitation procedure was carried out and the photoluminescence and absorption spectra of the quantum dot fractions were analyzed. Results: Ternary photoluminescent AgInS2/ZnS quantum dots stabilized in water by thioglycolic acid have been obtained by direct synthesis. Size-selective precipitation allowed to discriminate of 11 AgInS2/ZnS quantum dots fractions from the initial ensemble, revealing distinctly various optical properties. The effect of different pH and ionic strengths on the photoluminescent properties of AgInS2/ZnS quantum dots fractions has been studied. While in strong acidic and basic media the dramatic changes have been observed, the pH and ionic strength range corresponding to the biological fluids has shown no significant influence on the photoluminescent properties of all quantum dots fractions. Conclusion: This indicates the potential application of these nanoobjects as photoluminescent probes in various bioapplications.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 21-73-00102).
Reference: 
  1. Badıllı U., Mollarasouli F., Bakirhan N. K., Ozkan Y., Ozkan S. A. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC Trends in Analytical Chemistry, 2020, vol. 131, article no. 116013. https://doi.org/10.1016/j.trac.2020.116013
  2. Novikova A. S., Ponomaryova T. S., Goryacheva I. Y. Fluorescent AgInS/ZnS quantum dots microplate and lateral flow immunoassays for folic acid determination in juice samples. Microchimica Acta, 2020, vol. 187, pp. 1–9. https://doi.org/10.1007/s00604-020-04398-1
  3. Kirmani A. R., Luther J. M., Abolhasani M., Amassian A. Colloidal quantum dot photovoltaics: Current progress and path to gigawatt scale enabled by smart manufacturing. ACS Energy Letters, 2020, vol. 5, iss. 9, pp. 3069–3100. https://doi.org/10.1021/acsenergylett.0c01453
  4. Kargozar S., Hoseini S. J., Milan P. B., Hooshmand S., Kim H. W., Mozafari M. Quantum dots: A review from concept to clinic. Biotechnology Journal, 2020, vol. 15, iss. 12, article no. 2000117. https://doi.org/10.1002/biot.202000117
  5. Martynenko I. V., Baimuratov A. S., Weigert F., Soares J. X., Dhamo L., Nickl P., Doerfel I., Pauli J., Rukhlenko I. D., Baranov A. V., Resch-Genger U. Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Research, 2019, vol. 12, pp. 1595–1603. https://doi.org/10.1007/s12274-019-2398-4
  6. Dhamo L., Wegner K. D., Würth C., Häusler I., Hodoroaba V. D., Resch-Genger U. Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots. Scientific Reports, 2022, vol. 12, iss. 1, pp. 1–11. https://doi.org/10.1038/s41598-022-25498-3
  7. Delices A., Moodelly D., Hurot C., Hou Y., Ling W. L., Saint-Pierre C., Gasparutto D., Nogues G., Reiss P., Kheng K. Aqueous synthesis of DNA-functionalized near-infrared AgInS2/ZnS core/shell quantum dots. ACS Applied Materials and Interfaces, 2020, vol. 12, iss. 39, pp. 44026–44038. https://doi.org/10.1021/acsami.0c11337
  8. Luo L., Huang H., Feng P., Pan C., Kong F., Zhai L. Air-stable synthesis of near-infrared AgInSe2 quantum dots for sensitized solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, vol. 626, article no. 127071. https://doi.org/10.1016/j.colsurfa.2021.127071
  9. Xiang W., Xie C., Wang J., Zhong J., Liang X., Yang H., Luo L., Chen Z. Studies on highly luminescent AgInS2 and Ag-Zn-In-S quantum dots. Journal of Alloys and Compounds, 2014, vol. 588, pp. 114–121. https://doi.org/10.1016/j.jallcom.2013.10.188
  10. Zhang Y., Zhang Z., Liu Y., Gao H., Mao Y. Short-chain ligands capped CuInSe2 quantum dots as hole transport material for inverted perovskite solar cells. Materials Science in Semiconductor Processing, 2020, vol. 120, article no. 105267. https://doi.org/10.1016/j.mssp.2020.105267
  11. Liu L., Li H., Liu Z., Xie Y. H. Structure and band gap tunable CuInS2 nanocrystal synthesized by hot-injection method with altering the dose of oleylamine. Materials and Design, 2018, vol. 149, pp. 45–152. https://doi.org/10.1016/j.matdes.2018.04.015
  12. Miropoltsev M., Wegner K. D., Häusler I., Hodoroaba V. D., Resch-Genger U. Influence of hydrophilic thiol ligands of varying denticity on the luminescence properties and colloidal stability of quaternary semiconductor nanocrystals. Journal of Physical Chemistry C, 2022, vol. 126, iss. 47, pp. 20101–20113. https://doi.org/10.1021/acs.jpcc.2c05342
  13. Mandal A., Tamai N. Influence of acid on luminescence properties of thioglycolic acid-capped CdTe quantum dots. The Journal of Physical Chemistry C, 2008, vol. 112, iss. 22, pp. 8244–8250. https://doi.org/10.1021/jp801043e
  14. Muñoz R., Santos E. M., Galan-Vidal C. A., Miranda J. M., Lopez-Santamarina A., Rodriguez J. A. Ternary quantum dots in chemical analysis. Synthesis and detection mechanisms. Molecules, 2021, vol. 26, iss. 9, article no. 2764. https://doi.org/10.3390/molecules26092764
  15. Stroyuk O., Raevskaya A., Gaponik N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews, 2018, vol. 47, iss. 14, pp. 5354–5422. https://doi.org/10.1039/c8cs00029h
  16. Oluwafemi O. S., May B. M. M., Parani S., Tsolekile N. Facile, large scale synthesis of water soluble AgInSe2/ZnSe quantum dots and its cell viability assessment on different cell lines. Materials Science and Engineering C, 2020, vol. 106, article no. 110181. https://doi.org/10.1016/j.msec.2019.110181
  17. Rivaux C., Akdas T., Yadav R., El-Dahshan O., Moodelly D., Ling W. L., Aldakov D., Reiss P. Continuous flow aqueous synthesis of highly luminescent AgInS2 and AgInS2/ZnS quantum dots. The Journal of Physical Chemistry C, 2022, vol. 126, iss. 48, pp. 20524–2053. https://doi.org/10.1021/acs.jpcc.2c06849
  18. Soares J. X., Wegner K. D., Ribeiro D. S. М., Melo A., Häusler I., Santos J. L. M., Resch-Genger U. Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control. Nano Research, 2020, vol. 13, pp. 2438–2450. https://doi.org/10.1007/s12274-020-2876-8
  19. Dhamo L., Carulli F., Nickl P., Wegner K. D., Hodoroaba V. D., Würth C., Brovelli S., Resch-Genger U. Efficient luminescent solar concentrators based on environmentally friendly Cd-Free ternary AIS/ZnS quantum dots. Advanced Optical Materials, 2021, vol. 9, iss. 17, article no. 2100587. https://doi.org/10.1002/adom.202100587
  20. Mrad M., Ben Chaabane T., Rinnert H., Lavinia B., Jasniewski J., Medjahdi G., Schneider R. Aqueous synthesis for highly emissive 3-mercaptopropionic acid-capped AIZS quantum dots. Inorganic Chemistry, 2020, vol. 59, iss. 9, pp. 6220–6231. https://doi.org/10.1021/acs.inorgchem.0c00347
  21. Stroyuk O., Raevskaya A., Spranger F., Selyshchev O., Dzhagan V., Schulze S., Zahn D. R. T., Eychmüller A. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. Journal of Physical Chemistry C, 2018, vol. 122, iss. 25, pp. 13648–13658. https://doi.org/10.1021/acs.jpcc.8b00106
  22. Mir I. A., Bhat M. A., Muhammad Z., Rehman S. U., Hafeez M., Khan Q., Zhu L. Differential and comparative sensing modes of AIS and AIS@ZnS core-shell quantum dots towards bioanalytes. Journal of Alloys and Compounds, 2019, vol. 811, article no. 151688. https://doi.org/10.1016/j.jallcom.2019.151688
  23. Raevskaya A., Lesnyak V., Haubold D., Dzhagan V., Stroyuk O., Gaponik N., Zahn D. R. T., Eychmüller A. A Fine Size Selection of Brightly Luminescent Water-Soluble Ag-In-S and Ag-In-S/ZnS Quantum Dots. Journal of Physical Chemistry C, 2017, vol. 121, iss. 16, pp. 9032–9042. https://doi.org/10.1021/acs.jpcc.7b00849
  24. Stroyuk O., Weigert F., Raevskaya A., Spranger F., Würth C., Resch-Genger U., Gaponik N., Zahn D. R. T. Inherently Broadband Photoluminescence in Ag-In-S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies. Journal of Physical Chemistry C, 2019, vol. 123, iss. 4, pp. 2632–2641. https://doi.org/10.1021/acs.jpcc.8b11835
  25. Raievska O., Stroyuk O., Dzhagan V., Solonenko D., Zahn D. R. T. Ultra-Small Aqueous Glutathione-Capped Ag-In-Se Quantum Dots: Luminescence and Vibrational Properties. RSC Advances, 2020, vol. 10 iss. 69, pp. 42178–42193. https://doi.org/10.1039/d0ra07706b
Received: 
15.03.2023
Accepted: 
10.04.2023
Published: 
29.09.2023