For citation:
Tsoy M. O., Merkulova K. O., Postnov D. E. Distal Pulse Measurement Provides Statistical, but not Dynamical, Features of the Central Pulse. Izvestiya of Saratov University. Physics , 2020, vol. 20, iss. 3, pp. 164-170. DOI: 10.18500/1817-3020-2020-20-3-164-170
Distal Pulse Measurement Provides Statistical, but not Dynamical, Features of the Central Pulse
Heart rate variability is recognized in medicine as an important prognostic factor. It is generally believed that the temporal characteristics of the pulse signal do not depend on the measurement point. Specifically, the distal (on the fingers) arrangement of the photoplethysmographic sensors. Using a high-precision measurement technique, we show that on the way from the heart to distally located measurement points, the value of each individual beat-to-beat time may change. It can happen since each subsequent pulse wave propagates through the vessels with a speed different from the previous one, faster or slower. We show that the magnitude of deviation from the average value seems to be mediated by systemic factors. The most likely physiological mechanisms of the detected effect include both modulations of the properties of passive elasticity of the vascular wall depending on the peak value of systolic blood pressure and neurogenic modulation of the tone of the smooth muscles of the vessels.
- Buccelletti E., Gilardi E., Scaini E., Galiuto L., Persiani R., Biondi A., Basile F., Silveri N.G. Heart rate variability and myocardial infarction: systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci., 2009, vol. 13, no. 4, pp. 299–307.
- Catai A. M., Pastre C. M., de Godoy M. F., da Silva E., de Medeiros Takahashi A. C., Vanderlei L. C. M. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Brazilian Journal of Physical Therapy, 2019, vol. 24, no. 2, pp. 91–102. DOI: https://doi.org/10.1016/j.bjpt.2019.02.006
- Geus E. J. De, Gianaros P. J., Brindle R. C., Jennings J. R., Berntson G. G. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. Psychophysiology, 2019, vol. 56, no. 2, pp. E13287. DOI: https://doi.org/10.1111/psyp.13287
- Plews D. J., Scott B., Altini M., Wood M., Kilding A. E., Laursen P. B. Comparison of heart-rate-variability recording with smartphone photoplethysmography, Polar H7 chest strap, and electrocardiography. International Journal of Sports Physiology and Performance, 2017, vol. 12, no. 10, pp. 1324–1328. DOI: https://doi.org/10.1123/ijspp.2016-0668
- Mirescu Ş. C., Harden S. W. Photoplethysmography as a Potential Alternative to Electrocardiography for Recording Heart Rate Intervals Used in Variability Analysis. Journal of Medicine and Life, 2012, vol. 5, spec. iss., pp. 123.
- Bolanos M., Nazeran H., Haltiwanger E. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. New York, NY, 2006, pp. 4289–4294. DOI: https://doi.org/10.1109/IEMBS.2006.260607
- Gil E., Bailón R., Vergara J. M., Laguna P. PTT variability for discrimination of sleep apnea related decreases in the amplitude fl uctuations of PPG signal in children. IEEE Transactions on Biomedical Engineering, 2010, vol. 57, no. 5, pp. 1079–1088. DOI: https://doi.org/10.1109/TBME.2009.2037734
- Kortekaas M. C., van Velzen M. H., Grüne F., Niehof S. P., Stolker R. J., Huygen F. J. Small intra-individual variability of the pre-ejection period justifi es the use of pulse transit time as approximation of the vascular transit. PloS One, 2018, vol. 13, no. 10, pp. e0204105. DOI: https://doi.org/10.1371/journal.pone.0204105
- Kamshilin A. A., Sidorov I. S., Babayan L., Volynsky M. A., Giniatullin R., Mamontov O. V. Accurate measurement of the pulse wave delay with imaging photoplethysmography. Biomedical Optics Express, 2016, vol. 7, no. 12, pp. 5138–5147. DOI: https://doi.org/10.1364/BOE.7.005138
- Wu G. Q., Arzeno N. M., Shen L. L., Tang D. K., Zheng D. A., Zhao N. Q., Eckberg D. L., Poon C. S. Chaotic signatures of heart rate variability and its power spectrum in health, aging and heart failure. PloS One, 2009, vol. 4, no. 2, pp. e4323. DOI: https://doi.org/10.1371/journal.pone.0004323
- Wessel N., Riedl M., Kurths J. Is the normal heart rate “chaotic” due to respiration? Chaos: An Interdisciplinary Journal of Nonlinear Science, 2009, vol. 19, no. 2, pp. 028508. DOI: https://doi.org/10.1063/1.3133128
- Nakata A., Takata S., Yuasa T., Shimakura A., Maruyama M., Nagai H. Sakagami S., Kobayashi K. I. Spectral analysis of heart rate, arterial pressure, and muscle sympathetic nerve activity in normal humans. American Journal of Physiology-Heart and Circulatory Physiology, 1998, vol. 274, no. 4, pp. H1211–H1217. DOI: https://doi.org/10.1152/ajpheart.1998.274.4.H1211
- Dick T. E., Hsieh Y. H., Dhingra R. R., Baekey D. M., Galán R. F., Wehrwein E., Morris K. F. Cardiorespiratory coupling: common rhythms in cardiac, sympathetic, and respiratory activities. Progress in Brain Research, 2014, vol. 209, pp. 191–205. DOI: https://doi.org/10.1016/B978-0-444-63274-6.00010-2
- Tsoy M. O., Stiukhina E. S., Klochkov V. A., Postnov D. E. Akima splines for minimization of breathing interference in aortic rheography data. Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics, 2015, vol. 9448, pp. 94481L. DOI: https://doi.org/10.1117/12.2179872
- Nardone M., Incognito A. V., Millar P. J. Evidence for pressure-independent sympathetic modulation of central pulse wave velocity. Journal of the American Heart Association, 2018, vol. 7, no. 3, pp. E007971. DOI: https://doi.org/10.1161/JAHA.117.007971
- 1297 reads