Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Konyukhov A. I., Mavrin P. A., Shchurkin E. V. Discrete-Eigenvalue Multiplexing for Soliton Fiber-Optic Communication Links. Izvestiya of Sarat. Univ. Physics. , 2018, vol. 18, iss. 1, pp. 16-22. DOI: 10.18500/1817-3020-2018-18-1-16-22

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 52)

Discrete-Eigenvalue Multiplexing for Soliton Fiber-Optic Communication Links

Konyukhov Andrey Ivanovich, Saratov State University
Mavrin Petr Anatol'evich, Saratov State University
Shchurkin Evgenii Vladimirovich, Saratov State University

Background and Objectives: The nonlinear Fourier transform gives a powerful tool to analyze fiber-optics solitons. The solitons are described by a discrete set of eigenvalues of two coupled differential equations, which gives the nonlinear Fourier transform. Using the discrete eigenvalues for optical signal coding can increase the signal-to-noise ratio and reduce the effect of fiber nonlinearity. In the present paper an all-fiber-optics method is proposed to modulate the discrete eigenvalues. When the information is transmitted using optical solitons, the channel coding can be realized by changing the discrete eigenvalues which are calculated by means of the nonlinear Fourier transform. A modification of optical solitons and discrete eigenvalues in special optical fibers is considered. Materials and Methods: The interaction of optical solitons in a fiber with a periodic change in the dispersion was analyzed. Numerical simulations based on the nonlinear Schrödinger equation with variable coefficients were used. The discrete eigenvalues were calculated using methods of the inverse scattering problem. Results: A multiplexing scheme for fiber-optic transmission lines has been proposed. Conclusion: It is shown that the discrete soliton spectrum can be controlledby using a dispersion oscillating fiber. After propagation in a fiber with a periodic change of the dispersion, two interacting solitons change their complex eigenvalues. The magnitude and sign of the change depends on the distances between the solitons and on the modulation period of the fiber. The usage ofthe dispersion oscillating fiber allows one to create soliton pairs with a unique discrete eigenvalues. This phenomenon can be used to encode a signal by applying all-optical methods.

  1. Cvijetic M., Djordjevic I. B. Advanced optical communication systems and networks. Norwood, Artech House, 2013. 804 p.
  2. Wong E. Next-generation broadband access networks and technologies. J. of Lightwave Technol., 2012, vol. 30, pp. 597−608. DOI: https://doi.org/10.1109/JLT.2011.2177960
  3. Agrawal G. P. Fiber-optic communication systems. 3rd ed. New York, John Wiley & Sons Inc., 2002. 548 p. 
  4. Essiambre R. J., Kramer G., Winzer P. J., Foschini G. J., Goebel B. Capacity limits of optical fi ber networks. J. of Lightwave Technol., 2010, vol. 28, pp. 662–701. DOI: https://doi.org/10.1109/JLT.2009.2039464
  5. Akhmanov S. A., Vysloukh V. A., Chirkin A. S. Optics of femtosecond laser pulses. New York, Am. Inst. of Physics, 1992. 366 p. 
  6. Hasegawa A., Nyu T. Eigenvalue communication. J. of Lightwave Technol., 1993, vol. 11, pp. 395−399. DOI: https://doi.org/10.1109/50.219570
  7. Turitsyn S. K., Prilepsky J. E., Le S. T., Wahls S., Frumin L. L., Kamalian M., Derevyanko S. A. Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica, 2017, vol. 4, pp. 307−322. DOI: https://doi.org/10.1364/OPTICA.4.000307
  8. Yousefi M. I., Kschischang F. R. Information transmission using the nonlinear Fourier transform. Part II: numerical methods. IEEE Transactions on Information Theory, 2014, vol. 60, pp. 4329−4345. DOI: https://doi.org/10.1109/TIT.2014.2321151 
  9. Le S. T., Aref V., Buelow H. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit. Nature Photonics, 2017, vol. 11, pp. 1−8. DOI: https://doi.org/10.1038/nphoton.2017.118
  10. Dong Z., Hari S., Gui T., Zhong K., Yousefi M. I., Lu C., Wai P.-K. A. Nonlinear frequency division multiplexed transmissions based on NFT. IEEE Photon. Technol. Lett., 2015, vol. 27, pp. 1621−1623. DOI: https://doi.org/10.1109/LPT.2015.2432793
  11. Sysoliatin A. A., Senatorov A. K., Konyukhov A. I., Melnikov L. A., Stasyuk V. A. Soliton fi ssion management by dispersion oscillating fi ber. Optics Expr., 2007, vol. 15, pp. 16302−16307. DOI: https://doi.org/10.1364/OE.15.016302
  12. Dorokhova M. A., Konyukhov A. I., Melnikov L. A, Plastun A. S. Constructive interference of optical solitons in a fi ber with periodic variation of the dispersion. Izv. Saratov Univ. (N.S.), Ser. Physics., 2014, vol. 15, iss. 3, pp. 32–35 (in Russian). 
  13. Gui T., Lu C., Lau A. P. T., Wai P.-K. A. High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform. Optics Express, 2017, vol. 25, pp. 20286−20297. DOI: https://doi.org/10.1364/OE.25.020286
Краткое содержание:
(downloads: 46)