Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Kulminskiy D. D., Kurbako A. V., Skazkina V. V., Prokhorov M. D., Ponomarenko V. I., Kiselev A. R., Bezruchko B. P., Karavaev A. S. Development of a digital finger photoplethysmogram sensor. Izvestiya of Saratov University. Physics , 2021, vol. 21, iss. 1, pp. 58-68. DOI: 10.18500/1817-3020-2021-21-1-58-68, EDN: FHQUIJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 283)
Article type: 

Development of a digital finger photoplethysmogram sensor

Kulminskiy Danil Dmitrievich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Kurbako Aleksandr Vasilievich, Saratov State University
Skazkina Victoria Viktorovna, Saratov State University
Prokhorov Mikhail Dmitrievich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Ponomarenko Vladimir Ivanovich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Kiselev Anton Robertovich, Saratov State University
Bezruchko Boris Petrovich, Saratov State University
Karavaev Anatoly Sergeevich, Saratov State University

Background and Objectives: Due to the development of methods for analyzing signals of autonomous blood circulation control, cardiovascular system disorders can be diagnosed today in the early stages. It is promising to use specialized devices for personalized diagnosis of the cardiovascular system and monitoring its state. Research on autonomous blood circulation control systems is a complex problem both from the point of view of physiology and radiophysics. Its solution requires the development of methods and specialized devices for the analysis and registration of signals from the cardiovascular system. Therefore the object of research is the development of a photoplethysmogram sensor with a digital communication channel with a band of 0.05-30 Hz, recording the signals from the autonomous blood circulation monitoring system. Materials and Methods: To compare the level of noise and nonlinear distortions in the center of the frequency range of interest to us (at a frequency of 0.1 Hz), the power spectra of the signals were analyzed, and the coherence function was also calculated. Results: a prototype of a device for recording and analyzing a photoplethysmogram signal was developed and implemented, which makes it possible to register the signals from the circuits of autonomous blood circulation regulation. A comparative analysis of the developed device with a serial analog sensor was carried out, which demonstrated the advantages of the developed device. Conclusion: The developed broadband digital sensor can be used in wearable devices to diagnose the functional state of the cardiovascular system based on the analysis of synchronization between the circuits of autonomous regulation of blood circulation.

  1. Cullis P. The Personalized Medicine Revolution: How Diagnosing and Treating Disease Are About to Change Forever. Vancouver, Greystone Books, 2015. 176 p.
  2. Kiselev A. R., Borovkova E. I., Shvartz V. A., Skazkina V. V., Karavaev A. S., Prokhorov M. D., Ispiryan A. Y., Mironov S. A., Bockeria O. L. Low-frequency variability in photoplethysmographic waveform and heart rate during on-pump cardiac surgery with or without cardioplegia. Scientific Reports, 2020, vol. 10, 2118. DOI: https://doi.org/10.1038/s41598-020-58196-z
  3. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 2007, vol. 28, pp. R1–R39. DOI: https://doi.org/10.1088/0967-3334/28/3/R01
  4. Nitzan M., Turivnenko S., Milston A., Babchenko A., Mahler Y. Low-frequency variability in the blood volume and in the blood volume pulse measured by photoplethysmography. Journal of Biomedical Optics, 1996, vol. 1, pp. 223–229. DOI: https://doi.org/10.1117/12.231366
  5. Jain K. Textbook of Personalized Medicine. New York, Springer-Verlag, 2015. 430 p. DOI: https://doi.org/10.1007/978-1-4419-0769-1
  6. Karavaev A. S., Kiselev A. R., Gridnev V. I., Borovkova E. I., Prokhorov M. D., Posnenkova O. M., Ponomarenko V. I., Bezruchko B. P., Shvartz V. A. Phase and Frequency Locking of 0.1 Hz Oscillations in Heart Rate and Baroreflex Control of Blood Pressure by Breathing of Linearly Varying Frequency as Determined in Healthy Subjects. Human Physiology, 2013, vol. 39. no. 4, pp. 416–425. DOI: https://doi.org/10.1134/S0362119713010040
  7. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Circulation, 1996, vol. 93, pp. 1043–1065. DOI: https://doi.org/10.1161/01.CIR.93.5.1043
  8. Orini M., Laguna P., Mainardi L.T., Bailуn R. Assessment of the dynamic interactions between heart rate and arterial pressure by the cross time–frequency analysis. Physiological Measurement, 2012, vol. 33, no. 3, pp. 315–331. DOI: https://doi.org/10.1088/0967-3334/33/3/315
  9. Bernardi L., Radaelli A., Solda P. L., Coats A. J. S., Reeder M., Calciati A., Garrard C. S., Sleight P. Autonomic control of skin microvessels: Assessment by power spectrum of photoplethysmographic waves. Clinical Science, 1996, vol. 90, pp. 345–355. DOI: https://doi.org/10.1042/cs0900345
  10. Middleton P. M., Tang C. H., Chan G. S., Bishop S., Savkin A. V., Lovell N. H. Peripheral photoplethysmography variability analysis of sepsis patients. Med. Biol. Eng. Comput., 2011, vol. 49, pp. 337–347. DOI: https://doi.org/10.1007/s11517-010-0713-z
  11. Karavaev A. S., Prokhorov M. D., Ponomarenko V. I., Kiselev A. R., Gridnev V. I., Ruban E. I., Bezruchko B. P. Synchronization of low-frequency oscillations in the human cardiovascular system. Chaos, 2009, vol. 19, 033112. DOI: https://doi.org/10.1063/1.3187794
  12. Karavaev A. S., Ishbulatov Yu. M., Ponomarenko V. I., Bezruchko B. P., Kiselev A. R., Prokhorov M. D. Autonomic control is a source of dynamical chaos in the cardiovascular system. Chaos, 2019, vol. 29, 121101. DOI: https://doi.org/10.1063/1.5134833
  13. Kiselev A. R., Mironov S. A., Karavaev A. S., Kulminskiy D. D., Skazkina V. V., Borovkova E. I., Shvartz V. A., Роnomarenko V. I., Prokhorov M. D. A comprehensive assessment of cardiovascular autonomic control using photoplethysmograms recorded from earlobe and fingers. Physiological Measurement, 2016, vol. 37, pp. 580–595. DOI: https://doi.org/10.1088/0967-3334/37/4/580.
  14. Ponomarenko V. I., Prokhorov M. D., Karavaev A. S., Kiselev A. R., Gridnev V. I., Bezruchko B. P. Synchronization of low-frequency oscillations in the cardiovascular system: Application to medical diagnostics and treatment. The European Physical Journal Special Topics, 2013, vol. 222, pp. 2687–2696. DOI: https://doi.org/10.1140/epjst/e2013-02048-1
  15. Reisner A., Shaltis P. A., McCombie D., Asada H. Utility of the Photoplethysmogram in Circulatory Monitoring. Anesthesiology, 2008, vol. 108, pp. 950–958. DOI: https://doi.org/10.1097/ALN.0b013e31816c89e1
  16. Elgendi M., Fletcher R., Liang Y., Howard N., Lovell N. H., Abbott D., Lim K., Ward R. The use of photoplethysmography for assessing hypertension. Digital Medicine, 2019, vol. 2, pp. 60. DOI: https://doi.org/10.1038/s41746-019-0136-7
  17. Bashkatov A., Genina E., Kochubey V., Tuchin V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys., 2005, vol. 38, pp. 2543. DOI: https://doi.org/10.1088/0022-3727/38/15/004
  18. Moraes J. L., Rocha M. X., Vasconcelos G. G., Vasconcelos Filho J. E., De Albuquerque V. H. C., Alexandria A. R. Advances in photopletysmography signal analysis for biomedical applications. Sensors, 2018, vol. 18, 1894. DOI: https://doi.org/10.3390/s18061894
  19. Sun Y., Thakor N. Photoplethysmography revisited: from contact to noncontact, from point to imaging. IEEE Transactions on Biomedical Engineering, 2015, vol. 63, pp. 463–477. DOI: https://doi.org/10.1109/TBME.2015.2476337
  20. Tamura T., Maeda Y., Sekine M., Yoshida M. Wearable photoplethysmographic sensors–past and present. Electronics, 2014, vol. 3. pp. 282–302. DOI: https://doi.org/10.3390/electronics3020282
  21. Brucal S. G. E., Clamor G. K. D., Pasiliao L. A. O., Soriano J. P. F., Varilla L. P. M. Portable electrocardiogram device using Android smartphone. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 2016, pp. 509–512. DOI: https://doi.org/10.1109/EMBC.2016.7590751
  22. Hu J., Cui X., Gong Y., Xu X., Gao B., Wen T., Lu T. J., Xu F. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnology Advances, 2016, vol. 34, pp. 305–320. DOI: https://doi.org/10.1016/j.biotechadv.2016.02.008
  23. Sohn K., Merchant F. M., Sayadi O., Puppala D., Doddamani R., Sahani A., Singh J. P., Heist E. K., Isselbacher E. M., Armoundas A. A. A novel pointof-care smartphone based system for monitoring the cardiac and respiratory systems. Scientific Reports, 2017, vol. 7, 44946. DOI: https://doi.org/10.1038/srep44946
  24. Villamil C. A., Landínez S. F., López D. M., Blobel B. A mobile ECG system for the evaluation of cardiovascular risk. Stud. Health. Technol. Inform., 2016, vol. 228, pp. 210–214. DOI: https://doi.org/10.3233/978-1-61499-678-1-210210
  25. Dedov V. N., Dedova I. V. Development of the internetenabled system for exercise telerehabilitation and cardiovascular training. Telemed. J. E. Health, 2015, vol. 21, pp. 575–580. DOI: https://doi.org/10.1089/tmj.2014.0163
  26. Vogel S., Hulsbusch M., Hennig T., Blazek V., Leonhardt S. In-ear vital signs monitoring using a novel microoptic reflective sensor. IEEE Trans. Inf. Technol. Biomed., 2009, vol. 13, pp. 882–889. DOI: https://doi.org/10.1109/TITB.2009.2033268
  27. Wang C. Z., Zheng Y. P. Home-telecare of the elderly living alone using an new designed ear-wearable sensor. In: Proc. Int. Conf. Wearable Implantable Body Sens. Netw., 2008, pp. 280–283. DOI: https://doi.org/10.1109/ISSMDBS.2008.4575019
  28. Shin K., Kim Y., Bae S., Park K., Kim S. A Novel Headset with a Transmissive PPG Sensor for Heart Rate Measurement. 13th International Conference on Biomedical Engineering. IFMBE Proceedings, 2009, vol. 23, pp. 519–522. DOI: https://doi.org/10.1007/978-3-540-92841-6_127
  29. Poh M.-Z., Swenson N. C., Picard R. W. Motion-tolerant magnetic earring sensor and wireless earpiece for wearable photoplethysmography. IEEE Trans. Inf. Technol. Biomed., 2010, vol. 14, pp. 786–794. DOI: https://doi.org/10.1109/TITB.2010.2042607
  30. Spigulis J., Erts R., Nikiforovs V., Kviesis-Kipge E. Wearable wireless photoplethysmography sensors. Proc. SPIE, 2008, vol. 6991, pp. 69912O-1–69912O-7. DOI: https://doi.org/10.1117/12.801966
  31. Rhee S., Yang B.-H., Asada H. H. Artifact-resistant powerefficient design of finger-ring plethysmographic sensors. IEEE Trans. Biomed. Eng., 2001, vol. 48, pp. 795–805. DOI: https://doi.org/10.1109/10.930904
  32. Elgendi M., Fletcher R., Liang Y., Howard N., Lovell N. H., Abbott D., Lim K., Ward R. The use of photoplethysmography for assessing hypertension. Digital Medicine, 2019, vol. 2, pp. 60. DOI: https://doi.org/10.1038/s41746-019-0136-7