Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Mulamahawsh A. F., Simonenko G. V. Design of a terahertz radiation modulator based on the effect of multi-wave interference in a layered structure consisting of a large number of liquid crystal π-cells. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 4, pp. 438-448. DOI: 10.18500/1817-3020-2025-25-4-438-448, EDN: NPDCQA

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.11.2025
Full text:
(downloads: 4)
Language: 
Russian
Article type: 
Article
UDC: 
535.361:610.849.19:618.723
EDN: 
NPDCQA

Design of a terahertz radiation modulator based on the effect of multi-wave interference in a layered structure consisting of a large number of liquid crystal π-cells

Autors: 
Mulamahawsh Anfal Fadhil Ahmed, Saratov State University
Simonenko Georgy Valentinovich, Saratov State University
Abstract: 

Background and Objectives: An original design of a liquid crystal THz radiation modulator is proposed based on computer modeling. It consists of a stack of identical “classical” π--cells located one after another. Materials and Methods: Based on a computer model and by using the matrix method, the characteristics of the proposed device are studied: dependence of the device transmission on the control voltage, contrast ratio, and the modulator transmission value when the maximum control voltage is applied to it. Results: It has been shown that the modulator contrast ratio decreases with increasing wavelength of the modulated radiation, and the modulator transmission in the state with the maximum value of the control voltage does not exhibit such a dependence. It has been found that the decimal logarithm of the modulator contrast ratio linearly depends on the number of elementary π-cells included in its design. The slope coefficient of this linear function decreases with increasing wavelength of the modulated radiation. It has been shown that the described design of the THz radiation LC modulator is critical to the technological spread in the thickness of the elementary LC cell. However, the magnitude of this spread fits into the simple technology of manufacturing elementary π-cells and does not require improvement.

Reference: 
  1. Zhou Le, Zhong T., Liu Yu., Yu T., Neyts K., Luo Zh., Wang H., Sun Ji., Zhou Ji, Shen Ya. When Structured Light Encounters Liquid. Adv. Funct. Mater., 2024, vol. 34, art. 2404614. https://doi.org/10.1002/adfm.202404614
  2. Wang L., Wang Ya., Zong G., Hu W., Lu Ya. Liquid crystal based tunable terahertz metadevices. J. of Materiomics, 2025, vol. 11, no. 1, pp. 10–16. https://doi.org/10.1016/j.jmat.2024.04.012
  3. Harter T., Fuellner C., Kemal J. N., Ummethala S., Steinmann J. L., Brosi M., Hesler J. L., Bruendermann E., Mueller A. S., Freude W., Randel S., Koos C. Generalized Kramers-Kronig receiver for coherent terahertz communications. Nature Photonics, 2020, vol. 14, no. 10, pp. 601–606. https://doi.org/10.1038/s41566-020-0675-0
  4. Luomahaara J., Sipola H., Gronberg L., Mayra A., Aikio M., Timofeev A., Tappura K., Rautiainen A., Tamminen A., Vesterinen V., Leivo M., Gao F., Vasama H., Luukanen A., Hassel J. A passive, fully staring THz video camera based on kinetic inductance bolometer arrays. IEEE Trans. Terahertz Sci. Technol., 2020, vol. 11, iss. 1, pp. 101–108. https://doi.org/10.1109/TTHZ.2020.3029949
  5. Mu T., Ye Y., Dai Z., Zhao R., Yang M., Ren X. Silver nanoparticles-integrated terahertz metasurface for enhancing sensor sensitivity. Optics Express, 2022, vol. 30, iss. 23, pp. 41101–41109. https://doi.org/10.1364/OE.472520
  6. Lin Q. W., Wong H., Huitema L., Crunteanu A. Coding metasurfaces with reconfiguration capabilities based on optical activation of phase-change materials for terahertz beam manipulations. Adv. Opt. Mater., 2022, vol. 10, no. 1, art. 2101699. https://doi.org/10.1002/adom.202101699
  7. Mittleman D. M. Twenty years of terahertz imaging. Opt. Express, 2018, vol. 26, iss. 8, pp. 9417–9431. https://doi.org/10.1364/OE.26.009417
  8. Sun Q. S., He Y. Z., Liu K., Fan S. T., Parrott E. P. J., Pickwell-MacPherson E. Recent advances in terahertz technology for biomedical applications. Quant. Imag. Med. Surg., 2017, vol. 7, no. 3, pp. 345–355. https://doi.org/10.21037/qims.2017.06.02
  9. Alonso-del Pino M., Jung-Kubiak C., Reck T., Llombart N., Chattopadhyay G. Beam scanning of silicon lens antennas using integrated piezomotors at submillimeter wavelengths. IEEE Trans. Terahertz Sci. Technol., 2019, vol. 9, iss. 1, pp. 47–54. https://doi.org/10.1109/TTHZ.2018.2881930
  10. Yang Y., Gurbuz O. D., Rebeiz G. M. An eight-element 370–410-GHz phased-array transmitter in 45-nm CMOS SOI with PeakEIRP of 8–8.5 dBm. IEEE Trans. Microwave Theory Technol., 2016, vol. 64, iss. 12, pp. 4241–4249. https://doi.org/10.1109/TMTT.2016.2613850
  11. Niu T., Withayachumnankul W., Ung B. S. Y., Menekse H., Bhaskaran M., Sriram S., Fumeaux C. Experimental demonstration of reflectarray antennas at terahertz frequencies. Opt. Express, 2013, vol. 21, iss. 3, pp. 2875–2889. https://doi.org/10.1364/OE.21.002875
  12. Fu X., Yang F., Liu C., Wu X., Cui T. J. Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces. Adv. Opt. Mater., 2020, vol. 8, no. 3, art. 1900628. https://doi.org/10.1002/adom. 201900628
  13. Oh-E M., Zheng D. Reversibly switching liquid crystals between three orthogonal orientation states for use in rapid-response THz phase shifters. Opt. Express, 2023, vol. 31, pp. 8632–8640. https://doi.org/10.1364/OE.484171
  14. Ji Y., Jiang X., Fan F., Zhao H., Cheng J., Wang X., Chang S. Active terahertz beam deflection based on a phase gradient metasurface with liquid crystal-enhanced cavity mode conversion. Opt. Express, 2023, vol. 31, pp. 1269–1281. https://doi.org/10.1364/OE.479856
  15. Belyaev V. Liquid-crystal based devices for terahertz radiation modulation. Elektronika: nauka, tekhnologya, bisnes [Electronics: Science, Technology, Business], 2020, no. 5, pp. 96–98. https://doi.org/10.22184/1992-4178.2020.196.5.96.98 (in Russian).
  16. Simonenko G. V., Mulamakhavsh А. F. А. Modulation of terahertz radiation using liquid crystal π-cells. Applied Physics, 2024, no. 3, pp. 13–19. https://doi.org/10.51368/1996-0948-2024-3-13-19 (in Russian).
  17. He Z., Gou F., Chen R., Yin K., Zhan T., Wu S.-T. Liquid crystal beam steering devices: Principles, recent advances, and future developments. Crystals, 2019, vol. 9, iss. 6, pp. 292–300. https://doi.org/10.3390/cryst9060292
  18. Simonenko G. V. Komp’yuternoe modelirovanie kharakteristik bystrodeistvuyushchikh klassicheskikh modulyatorov na osnove zhidkikh kristallov [Computer simulation of characteristics of high-speed classical modulators based on liquid crystals]. Saratov, Saratov State University Publ., 2018. 136 p. (in Russian).
  19. Yakovlev D. A., Chigrinov V. G., Kwok H. S. Modeling and optimization of LCD optical performance. Chichester, Wiley, 2015. XXIII+554 p. https://doi.org/10.1002/9781118706749
  20. Mulamakhavsh А. F. А., Simonenko G. V. Optical characteristics of liquid crystal cells in the terahertz range. Problems of Optical Physics and Biophotonics. SFM-2024. Simonenko G. V., Tuchin V. V., eds. Saratov, Izdatelstvo Saratovskiy Istochnik, 2024. Pp. 71–79. https://doi.org/10.24412/cl-37275-2024-1-71-79 (in Russian).
  21. Azzam R. M. A., Bashara N. M. Ellipsometry and polarized light. Amsterdam, North Holland, 1977. XVII+529 p.
  22. Mulamahawsh Anfal Fadhil Ahmed, Simonenko G. V. Dependence of the electromagnetic radiation transmission coefficient of liquid crystal π-cells in the terahertz range. J. of Optics and Photonics Research (online first), 2025. 6 p. Available at: https://ojs.bonviewpress.com/index.php/JOPR/article/view/5210/1402 (accessed September 26, 2025). https://doi.org/10.47852/bonviewJOPR52025210
  23. Chigrinov V. G., Simonenko G. V., Yakovlev D. A., Podjachev Yu. B. The optimization of LCD electrooptical behavior using MOUSE – LCD software. Mol. Cryst. Liq. Cryst. Sc. Techn. Section A. Mol. Cryst. Liq. Cryst., 2000, vol. 351, iss. 1, pp. 17–25. https://doi.org/10.1080/10587250008023248
  24. Park H., Parrott E. P. J., Fan Fan, Lim M., Han H., Chigrinov V. G., Pickwell-MacPherson E. Evaluating liquid crystal properties for use in terahertz devices. Opt. Express, 2012, vol. 20, iss. 11, pp. 11899–11905. https://doi.org/10.1364/OE.20.011899
  25. Li X., Tan N., Pivnenko M., Sibik J., Zeitler J. A., Chu D. High-birefringence nematic liquid crystal for broadband THz applications. Liquid Crystal, 2016, vol. 43, no. 7, pp. 955–962. https://doi.org/10.1080/02678292.2016.1153732
  26. Kurchatkin S. P. Poverkhnostnye yavleniya i struktura termotropnykh zhidkikh kristallov v kapillyarnykh obyemakh. Dis. d-ra khim. nauk [Surface phenomena and structure of thermotropic liquid crystals in capillary volumes. Dr. Diss. (Chem.)]. Saratov, 2001. 290 p. (in Russian).
  27. Sukharier A. S. Zhidkokristallicheskie indicatory [Liquid crystal indicators]. Moscow, Radio i svyaz’, 1991. 256 p. (in Russian).
  28. Born M., Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th (expanded) edition. Cambridge, Cambridge University Press, 1999. 985 p.
  29. Radivon A. V., Paukov M. I., Katyba G. M., Raginov N. I., Chernykh A. V., Ezersky A. S., Tsiplakova E. G., Rakov I. I., Arsenin A. V., Spektor I. E., Zaitsev K. I., Krasnikov D. V., Petrov N. V., Nasibulin A. G., Volkov V. A., Burdanova M. G. Spatial modulation of terahertz radiation using optical vortex generators based on thin films of single-walled carbon nanotubes. Opt. and Spectr., 2025, vol. 133, iss. 3, pp. 303–307. https://doi.org/10.61011/OS.2025.03.60248.15-25
  30. Smolyanskaya O. A., Chernomyrdin N. V., Konovko A. A., Zaytsev K. I., Ozheredov I. A., Cherkasova O. P., Nazarov M. M., Guillet J.-P., Kozlov S. A., Kistenev Yu. V., Coutaz J.-L., Mounaix P., Vaks V. L., Son J.-H., Cheon H., Wallace V. P., Feldman Yu., Popov I., Yaroslavsky A. N., Shkurinov A. P., Tuchin V. V. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progress in Quantum Electronics, 2018, vol. 62, pp. 1–17. https://doi.org/10.1016/j.pquantelec.2018.10.001
  31. Gibin I. S., Kotlyar P. V. Teraherz radiation detectors. Applied Physics, 2018, vol. 6, no. 2, pp. 117–129. EDN: UOIVWF
  32. Tong W., Zhu P., eds. 6G: The Next Horizon. From Connected People and Things to Connected Intelligence.Cambridge, Cambridge University Press, 2021. XVI+474 p. https://doi.org/10.1017/9781108989817
  33. Burdanova M. G., Katyba G. M., Kashtiban R., Komandin G. A., Butler-Caddle E., Staniforth M., Mkrtchyan A. A., Krasnikov D. V., Gladush Y. G., Sloan J., Nasibulin A. G., Lloyd-Hughes J. Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films. Carbon, 2021, vol. 173, pp. 243–252. https://doi.org/10.1016/j.carbon.2020.11.008
  34. Simonenko G. V. Liquid Crystal Modulator Based on a π-Cell for THz Measurements. Photonics, 2025, vol. 19, iss. 5, pp. 19–24. https://doi.org/10.22184/1993-7296.FRos.2025.19.5.378.388
Received: 
11.07.2025
Accepted: 
10.09.2025
Published: 
28.11.2025