For citation:
Verkhovskii R. A., Anisimov R. A., Lomova M. V., Tuchina D. K., Lazareva E. N., Doronkina A. A., Mylnikov A. M., Navolokin N. A., Kochubey V. I., Yanina I. I. Cytotoxicity of various types of coated upconversion nanoparticles. Overview. Izvestiya of Saratov University. Physics , 2022, vol. 22, iss. 4, pp. 357-373. DOI: 10.18500/1817-3020-2022-22-4-357-373, EDN: DLYOKR
Cytotoxicity of various types of coated upconversion nanoparticles. Overview
Background and Objectives: The object of the study was the cytotoxicity of various types of coated upconversion nanoparticles. The aim is to overview the literature on the cytotoxicity of various types of upconversion nanoparticles without/with coating and to search for their maximum permissible concentration when applied to cell. Materials and Methods: The approach used has been the analysis of recent publications on the topic. Results: Upconversion nanoparticles are promising for fluorescence imaging and cancer therapy. Nanoparticles with additional shells or functionalized by surface coating with targeted or photoactive molecules are considered. The toxicological effect of nanoparticles on living organisms is of decisive importance when they are used in therapy or diagnostics. The “dark” cytotoxicity of particles is considered. The cytotoxicity of particles depends on the total number of nanoparticles that have penetrated into the cell. Conclusion: Based on the analysis of a large number of publications, it can be concluded that nanoparticles coated with silicon dioxide (SiO2) are characterized by the least cytotoxic effect, which opens up prospects for the use of this type of nanoparticles in medical practice.
- Wang M., Abbineni G., Clevenger A., Mao C., Xu S. Upconversion nanoparticles: Synthesis, surface modification and biological applications. Nanomed. : Nanotechnol. Biol. Med., 2011, vol. 7, pp. 710–729. https://doi.org/10.1016/j.nano.2011.02.013
- Cao Y., Wu J., Zheng X., Lu Y., Piper J. A., Lu Y., Packer N. H. Assessing the activity of antibodies conjugated to upconversion nanoparticles for immunolabeling. Anal. Chim. Acta, 2022, vol. 1209, pp. 339863. https://doi.org/10.1016/j.aca.2022.339863
- Li Y., Chen C., Liu F., Liu J. Engineered lanthanidedoped upconversion nanoparticles for biosensing and bioimaging application. Microchim. Acta, 2022, vol. 189, pp. 109. https://doi.org/10.1007/s00604-022-05180-1
- Liang G., Wang H., Shi H., Wang H., Zhu M., Jing A., Li J., Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnol., 2020, vol. 18, pp. 154. https://doi.org/10.1186/s12951-020-00713-3
- Rafique R., Kailasa S. K., Park T. J. Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends Anal. Chem., 2019, vol. 120, no. 115646, pp. 1–19 https://doi.org/10.1016/j.trac.2019.115646
- Ai X., Lyu L., Zhang Y., Tang Y., Mu J., Liu F., Zhou Y., Zuo Z., Liu G., Xing B. Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals. Angew. Chem. Int. Ed., 2017, vol. 56, no. 11, pp. 3031–3035. https://doi.org/10.1002/anie.201612142
- Sun M., Xu L., Ma W., Wu X., Kuang H., Wang L., Xu C. Phototherapy: Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy. Adv. Mater., 2016, vol. 28, no. 5, pp. 897. https://doi.org/10.1002/adma.201670033
- Wang C., Tao H., Cheng L., Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials, 2011, vol. 32, no. 26, pp. 6145–6154. https://doi.org/10.1016/j.biomaterials.2011.05.007
- Tian G., Zhang X., Gu Z., Zhao Y. Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv. Mater., 2015, vol. 27, no. 47, pp. 7692–7712. https://doi.org/10.1002/adma.201503280
- Wang M., Hu C., Su Q. Luminescent Lifetime Regulation of Lanthanide-Doped Nanoparticles for Biosensing. Biosensors, 2022, vol. 12, no. 2, pp. 131. https://doi.org/10.3390/bios12020131
- He S., Song J., Liu J., Liu L., Qu J., Cheng Z. Enhancing Photoacoustic Intensity of Upconversion Nanoparticles by Photoswitchable Azobenzene-Containing Polymers for Dual NIR-II and Photoacoustic Imaging In Vivo. Adv. Opt. Mater., 2019, vol. 7, pp. 1900045. https://doi.org/10.1002/adom.201900045
- Yuan S., Liu Z., Liang T., Jin D., Wang H., Qiao R., Dong M., Gong P. Au-decorated NaYF4:Yb,Tm@NaGdF4:Yb@TiO2 nanophotosensitizers for photodynamic therapy and MR/PET imaging. Mater. Lett., 2022, vol. 314, pp. 131926. https://doi.org/10.1016/j.matlet.2022.131926
- Ni J., Xu H., Zhong Y., Zhou Y., Hu S. Activatable UCL/CT/MR-enhanced in vivo imaging-guided radiotherapy and photothermal therapy. J. Mater. Chem. B, 2022, vol. 10, pp. 549–561. https://doi.org/10.1039/D1TB02006D
- Ge J., Chen L., Huang B., Gao Y., Zhou D., Zhou Y., Chen C., Wen L., Li Q., Zeng J., Zhong Z., Gao M. Anchoring Group-Mediated Radiolabeling of Inorganic Nanoparticles – A Universal Method for Constructing Nuclear Medicine Imaging Nanoprobes. ACS Appl. Mater. Interfaces., 2022, vol. 14, no. 7, pp. 8838–8846. https://doi.org/10.1021/acsami.1c23907
- Lisjak D., Plohl O., Ponikvar-Svet M., Majaron B. Dissolution of upconverting fluoride nanoparticles in aqueous suspensions. RSC Adv., 2015, vol. 5, pp. 27393–27397. https://doi.org/10.1039/C5RA00902B
- Plohl O., Kralj S., Majaron B. Fröhlich E., Ponikvar-Svet M., Makovec D., Lisjak D. Amphiphilic coatings for the protection of upconverting nanoparticles against dissolution in aqueous media. Dalton Trans., 2017, vol. 46, pp. 6975–6984. https://doi.org/10.1039/C7DT00529F
- Andresen E. Würth C., Prinz C., Michaelis M., Resch-Genger U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. Nanoscale, 2020, vol. 12, pp. 12589–12601. https://doi.org/10.1039/D0NR02931A
- Saleh M. I., Rьhl B., Wang S., Radnik J., You Y., ReschGenger U. Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DME M. Sci. Rep., 2020, vol. 10, pp. 1–11. https://doi.org/10.1038/S41598-020-76116-Z
- Adan A., Kiraz Y., Baran Y. Cell Proliferation and Cytotoxicity Assays. Curr. Pharm. Biotechnol., 2016, vol. 17, no. 14, pp. 1213–1221. https://doi.org/10.2174/1389201017666160808160513
- Zhou J., Liu Z., Li F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev., 2012, vol. 41, pp. 1323–1349. https://doi.org/10.1039/C1CS15187H
- Chávez-García D., Juárez-Moreno K., Campos C. H., Tejeda E. M., Alderete J. B., Hirata G. A. Cytotoxicity, genotoxicity and uptake detection of folic acid-functionalized green upconversion nanoparticles Y2O3/Er3+, Yb3+ as biolabels for cancer cells. J. Mater. Sci., 2018, vol. 53, no. 9, pp. 6665–6680. https://doi.org/10.1007/s10853-017-1946-0
- Chavez D. H., Juarez-Moreno K., Hirata G. A. Aminosilane functionalization and cytotoxicity effects of upconversion nanoparticles Y2O3 and Gd2O3 Co-Doped with Yb3+ and Er3+. Nanobiomedicine, 2016, vol. 3, no. 1, pp. 1–7. https://doi.org/10.5772/62252
- Gu Y., Qiao X., Zhang J., Sun Y., Tao Y., Qiao S.-X. Effects of surface modification of upconversion nanoparticles on cellular uptake and cytotoxicity. Chem. Res. Chin. Univ., 2016, vol. 32, no. 3, pp. 474–479. https://doi.org/10.1007/s40242-016-6026-5
- Das G. K., Stark D., Kennedy I. M. Potential Toxicity of Up-Converting Nanoparticles Encapsulated with a Bilayer Formed by Ligand Attraction. Langmuir, 2014, vol. 30, no. 27, pp. 8167–8176. https://doi.org/10.1021/la501595f
- Atabaev T. Sh., Lee J. H., Han D. W., Hwang Y. H., Kim H. K. Cytotoxicity and cell imaging potentials of submicron color-tunable yttria particles. J. Biomed. Mater. Res. A, 2012, vol. 100, no. 9, pp. 2287–2294. https://doi.org/10.1002/jbm.a.34168
- Gao G., Zhang C., Zhou Z., Zhang X., Ma J., Li C., Jin W., Cui D. One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging. Nanoscale, 2013, vol. 5, no. 1, pp. 351–362. https://doi.org/10.1039/C2NR32850J
- Gupta B. K., Narayanan T. N., Vithayathil S. A., Lee Y., Koshy S., Reddy A. L., Saha A., Shanker V., Singh V. N., Kaipparettu B. A. Martí A. A., Ajayan P. M. Highly luminescent-paramagnetic nanophosphor probes for in vitro high-contrast imaging of human breast cancer cells. Small, 2012, vol. 8, no. 19, pp. 3028–3034. https://doi.org/10.1002/smll.201200909
- Wang C., He M., Chen B., Hu B. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells. Ecotoxicol. Environ. Saf., 2020, vol. 203, no. 110951, pp. 1–10. https://doi.org/10.1016/j.ecoenv.2020.110951
- Hemmer E., Yamano T., Kishimoto H., Venkatachalam N., Hyodo H., Soga K. Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomater., 2013, vol. 9, no. 1, pp. 4734–4743. https://doi.org/10.1016/j.actbio.2012.08.045
- Zhang J., Liu F., Li T., He X., Wang Z. Surface charge effect on the cellular interaction and cytotoxicity of NaYF4:Yb3+, Er3+@SiO2 nanoparticles. RSC Adv., 2015, vol. 5, pp. 7773–7780. https://doi.org/10.1039/C4RA11374H
- Bae Y. M., Park Y. I., Nam S. H., Kim J. H., Lee K., Kim H. M., Yoo B., Choi J. S., Lee K. T., Hyeon T., Suh Y. D. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials, 2012, vol. 33, no. 35, pp. 9080–9086. https://doi.org/10.1016/j.biomaterials.2012.08.039
- Guller A., Generalova A. N., Petersen E. V., Nechaev A. V., Trusova I. A., Landyshev N. N., Nadort A., Grebenik E. A., Deyev S. M., Shekhter A. B., Zvyagin A. V. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res., 2015, vol. 8, no. 1546, pp. 1–17. https://doi.org/10.1007/s12274-014-0641-6
- Li R., Ji Z., Dong J., Chang C. H., Wang X., Sun B., Wang M., Liao Y. P., Zink J. I., Nel A. E., Xia T. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. ACS Nano, 2015, vol. 9, no. 3, pp. 3293–3306. https://doi.org/10.1021/acsnano.5b00439
- Gnach A., Lipinski T., Bednarkiewicz A., Rybka J., Capobianco J. A. Upconverting nanoparticles: Assessing the toxicity. Chem. Soc. Rev., 2015, vol. 44, pp. 1561–1584. https://doi.org/10.1039/C4CS00177J
- Torresan M. F., Wolosiuk A. Critical Aspects on the Chemical Stability of NaYF4-Based Upconverting Nanoparticles for Biomedical Applications. ACS Appl. Bio. Mater., 2021, vol. 4, no. 2, pp. 1191–1210. https://doi.org/10.1021/acsabm.0c01562
- Xia A., Chen M., Gao Y., Wu D., Feng W., Li F. Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials, 2012, vol. 33, no. 21, pp. 5394–5405. https://doi.org/10.1016/j.biomaterials.2012.04.025
- Abdul Jalil R., Zhang Y. Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. Biomaterials, 2008, vol. 29, no. 30, pp. 4122–4128. https://doi.org/10.1016/j.biomaterials.2008.07.012
- Guo H., Hao R., Qian H., Sun S., Sun D., Yin H., Liu Z., Liu X. Upconversion nanoparticles modified with aminosilanes as carriers of DNA vaccine for foot-andmouth disease. Appl. Microbiol. Biotechnol., 2012, vol. 95, no. 5, pp. 1253–1263. https://doi.org/10.1007/s00253-012-4042-z
- Li C., Yang D., Ma P., Chen Y., Wu Y., Hou Z., Dai Y., Zhao J., Sui C., Lin J. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small, 2013, vol. 9, no. 24, pp. 4150–4159. https://doi.org/10.1002/smll.201301093
- Ma J., Huang P., He M., Pan L., Zhou Z., Feng L., Gao G., Cui D. Folic acid-conjugated LaF3:Yb,Tm@SiO2 nanoprobes for targeting dualmodality imaging of upconversion luminescence and X-ray computed tomography. J. Phys. Chem. B, 2012, vol. 116, no. 48, pp. 14062–14070. https://doi.org/10.1021/jp309059u
- Li X., Tang Y., Xu L., Kong X., Zhang L., Chang Y., Zhao H., Zhang H., Liu X. Dependence between cytotoxicity and dynamic subcellular localization of upconversion nanoparticles with different surface charges. RSC Adv., 2017, vol. 7, no. 53, pp. 33502–33509. https://doi.org/10.1039/C7RA04487A
- Zhou N., Qiu P., Wang K., Fu H., Gao G., He R., Cui D. Shape-controllable synthesis of hydrophilic NaLuF4:Yb,Er nanocrystals by a surfactant-assistant two-phase system. Nanoscale Res. Lett., 2013, vol. 8, no. 1, pp. 518. https://doi.org/10.1186/1556-276X-8-518
- Liu C., Shao H., Li D., Sui X., Liu N., Rahman S. U., Li X., Arany P. R. Safety and efficacy of citric acidupconverting nanoparticles for multimodal biological imaging in BALB/c mice. Photodiagnosis Photodyn. Ther., 2021, vol. 36, pp. 102485. https://doi.org/10.1016/j.pdpdt.2021.102485
- Vedunova M. V., Mishchenko T. A., Mitroshina E. V., Ponomareva N. V., Yudintsev A. V., Generalova A. N. Cytotoxic effects of upconversion nanoparticles in primary hippocampal cultures. RSC Adv., 2016, vol. 6, no. 40, pp. 33656–33665. https://doi.org/10.1039/C6RA01272H
- Wang C., Cheng L., Xu H., Liu Z. Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials, 2012, vol. 33, no. 19, pp. 4872–4881. https://doi.org/10.1016/j.biomaterials.2012.03.047
- Chatterjee D. K., Rufaihah A. J., Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 2008, vol. 29, no. 7, pp. 937–943. https://doi.org/10.1016/j.biomaterials.2007.10.051
- Zhao L., Kutikov A., Shen J., Duan C., Song J., Han G. Stem cell labeling using polyethylenimine conjugated (α-NaYbF4:Tm3+)/CaF2 upconversion nanoparticles. Theranostics, 2013, vol. 3, no. 4, pp. 249–257. https://doi.org/10.7150/thno.5432
- Yang D., Dai Y., Ma P., Kang X., Cheng Z., Li C., Lin J. One-step synthesis of small-sized and water-soluble NaREF4 upconversion nanoparticles for in vitro cell imaging and drug delivery. Chemistry, 2013, vol. 19, no. 8, pp. 2685–2694. https://doi.org/10.1002/chem.201203634
- Himmelstoß S. F., Hirsch T. Long-Term Colloidal and Chemical Stability in Aqueous Media of NaYF4-Type Upconversion Nanoparticles Modified by Ligand-Exchange. Part. Part. Syst. Charact., 2019, vol. 36, no. 10, pp. 1900235. https://doi.org/10.1002/ppsc.201900235
- Kembuan C., Oliveira H., Graf C. Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells. Beilstein J. Nanotechnol., 2021, vol. 12, pp. 35–48. https://doi.org/10.3762/bjnano.12.3
- Chithrani B. D., Ghazani A. A., Chan W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, vol. 6, pp. 662–668. https://doi.org/10.1021/nl052396o
- Chen G., Ohulchanskyy T. Y., Kumar R., Ågren H., Prasad P. N. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced nearinfrared to near-infrared upconversion photoluminescence. ACS Nano, 2010, vol. 4, pp. 3163–3168. https://doi.org/10.1021/nn100457j
- Bastos V., Oskoei P., Andresen E., Saleh M. I. Rühle B., Resch-Genger U., Oliveira H. S. Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings. Sci. Rep., 2022, vol. 12, no. 1, pp. 3770. https://doi.org/10.1038/s41598-022-07630-5
- Yang D., Dai Y., Liu J., Zhou Y., Chen Y., Li C., Ma P., Lin J. Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes. Biomaterials, 2014, vol. 35, no. 6, pp. 2011– 2023. https://doi.org/10.1016/j.biomaterials.2013.11.018
- Polukonova N. V., Isaev D. S., Myl’nikov A. M., Bucharskaya A. B., Polukonova A. V., Mudrak D. A., Navolokin N. A. Assessment by the Fluorescence Imaging Methods of the Antitumor Efficacy and Apoptotic Activity of Biologically Active Additives Containing Resveratrol, Indole-3-Carbinol, and Cordycepin in Human Renal Carcinoma Cells. Opt. Spectrosc., 2021, vol. 129, pp. 804–812 (in Russian). https://doi.org/10.1134/S0030400X21060114
- Myl’nikov A. M., Polukonova N. V., Isaev D. S., Doroshenko A. A., Verkhovskii R. A., Nikolaeva N. A., Mudrak D. A., Navolokin N. A. Identification of pathways of a498 human kidney carcinoma cell death under the action of gratiola officinalis l. extract and green tea flavonoids using fluorescence imaging techniques. Opt. Spectrosc., 2020, vol. 128, no. 7, pp. 972–979 (in Russian). https://doi.org/10.1134/S0030400X20070139
- Sagaidachnaya Е. А., Yanina I. Yu., Kochubey V. I. Prospects For Application of Upconversion Particles NaYF4:Er,Yb for Phototherapy. Izvestiya of Saratov University. Physics, 2018, vol. 18, no. 4, pp. 253–274 (in Russian). https://doi.org/10.18500/1817-3020-2018-18-4-253-274
- 912 reads