Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Koronevskiy N. V., Savelyeva M. S., Lomova M. V., Sergeeva B. V., Kozlova A. A., Sergeev S. A. Composite mesoporous vaterite-magnetite coatings on polycaprolactone fibrous matrix. Izvestiya of Sarat. Univ. Physics. , 2022, vol. 22, iss. 1, pp. 62-71. DOI: 10.18500/1817-3020-2022-22-1-62-71

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.03.2022
Full text:
(downloads: 57)
Language: 
English
Article type: 
Article
UDC: 
29.19.16:29.19.22:616-77:615.4

Composite mesoporous vaterite-magnetite coatings on polycaprolactone fibrous matrix

Autors: 
Koronevskiy Nikita Vladimirovich, Saratov State University
Savelyeva Mariia Sergeevna, Saratov State University
Lomova Maria V., Saratov State University
Sergeeva Bela V., Saratov State University
Kozlova Anastasia A., Saratov State University
Sergeev Sergey Alekseevich, Saratov State University
Abstract: 

Background and Objectives: Based on polymers and inorganic components, hybrid nanostructured materials are used in biomedicine, including tissue engineering and drug delivery with the controlled release. This research aims to develop the method for forming composite coating of vaterite and MNPs on electrospun PCL fibers, which will maintain sensitivity to magnetic fields for a period for the use of magnetotherapy and to control the rate of drug release. Materials and Methods: Three methods of CaCO3 + magnetic nanoparticles coating formation on the surface of policaprolacton fibers were tested. The coating recrystallization time of CaCO3 (transformation from the vaterite polymorph to calcite) on policaprolacton fibers was determined. Results: For samples obtained by CaCO3 and magnetite coprecipitation and US-assisted methods, the time of complete recrystallization is 5 hours, which is less by 2 times than the recrystallization rate of the control sample. Conclusion: The crystallization-induced method is most effective, proved by the recrystallization time of magnetic CaCO3 microparticles on the surface of PCL fibers, which is comparable to the control sample. Obtained by the method of salt co-precipitation with magnetite and US-assisted method, inorganic coatings on PCL fibers have a shorter recrystallization period.

Acknowledgments: 
The reported study was funded by RFBR according to the research project No. 20-07-00603 A.
Reference: 
  1. Dvir T., Timko B. P., Kohane D. S., Lange R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol., 2011, vol. 6, pp. 13–22. https://www.doi.org/10.1038/nnano.2010.246
  2. Lengert E. V., Saveleva M. S., Abalymov A., Atkin V., Wuytens P. C., Kamyshinsky R., Vasiliev A. L., Gorin D. A., Sukhorukov G. B., Skirtach A. G., Parakhonskiy B. Silver Alginate Hydrogel Micro- and Nanocontainers for Theranostics : Synthesis, Encapsulation, Remote Release, and Detection. ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 1–48. https://www.doi.org/10.1021/acsami.7b08147
  3. Saveleva M. S., Lengert E. V., Gorin D. A., Parakhonskiy B. V., Skirtach A. G. Polymeric and Lipid Membranes – From Spheres to Flat Membranes and vice versa. Membranes (Basel), 2017, vol. 7, pp. 1–14. https://www.doi.org/10.3390/membranes7030044
  4. Grayson W., Martens T., Eng G., Radisic M., Vunjak-Novakovic G. Biomimetic Approach to Tissue Engineering. Cell, 2010, vol. 20, pp. 665–673. https://www.doi.org/10.1016/j.semcdb.2008.12.008.Biomimetic
  5. Darder M., Aranda P., Ruiz-Hitzky E. Bionanocomposites : A new concept of ecological, bioinspired, and functional hybrid materials. Adv. Mater., 2007, vol. 19, pp. 1309–1319.
  6. Ren D., Feng Q., Bourrat X. Effects of additives and templates on calcium carbonate mineralization in vitro. Micron, 2011, vol. 42, pp. 228–245.
  7. Savelyeva M. S., Abalymov A. A., Lyubun G. P., Vidyasheva I. V., Yashchenok A. M., Douglas T. E. L., Gorin D. A., Parakhonskiy B. V. Vaterite coatings on electrospun polymeric fibers for biomedical applications. Journal of Biomedical Materials Research Part A, 2017, vol. 105, no. 1, pp. 94–103.
  8. Inozemtseva O. A., Salkovskiy Y. E., Severyukhina A. N., Vidyasheva I. V., Petrova N. V., Metwally H. A., Stetciura I. Y., Gorin D. A. Electro-spinning of functional materials for biomedicine and tissue engineering. Russ. Chem. Revu, 2015, vol. 84, pp. 251–274.
  9. Severyukhina A. N., Parakhonskiy B. V., Prikhozhdenko E. S., Gorin D. A., Sukhorukov G. B., Mohwald H., Yashchenok A. M. Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 15466–15473.
  10. Buttafoco L., Kolkman N. G., Engbers-Buijtenhuijs P., Poot A. A., Dijkstra P. J., Vermes I., Feijen J. Electro-spinning of collagen and elastin for tissue engineering applications. Biomaterials, 2006, vol. 27, pp. 724–734.
  11. Koepsell L., Remund T., Bao J., Neufeld D., Fong H., Deng Y. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers. J. Biomed. Mater. Res., Part A, 2011, vol. 99, pp. 564–575.
  12. Shah P. N., Manthe R. L., Lopina S. T., Yun Y. Helectrospinning of ltyrosine polyurethanes for potential biomedical applications. Polymer (Guildf). Elsevier Ltd., 2009, vol. 50, pp. 2281–2289.
  13. Powell H. M., Boyce S. T. Engineered human skin fabricated using electrospun collagen-PCL blends : Mor[1]phogenesis and mechanical properties. Tissue Eng. Part A, 2009, vol. 15, pp. 2177–2187.
  14. Kolambkar Y. M., Peister A., Ekaputra A. K., Hutmacher D. W., Guldberg R. E. Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes. Tissue Eng. Part A, 2010, vol. 16, pp. 3219–3330.
  15. Shafiee A., Soleimani M., Chamheidari G. A., Seyedjafari E., Dodel M., Atashi A., Gheisari Y. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J. Biomed. Mater. Res., Part A, 2011, vol. 99, pp. 467–478.
  16. Yang F., Wolke J. G. C., Jansen J. Biomimetic calcium phosphate coating on electrospun poly(E-caprolactone) scaffolds for bone tissue engineering. Chem. Eng. J., 2008, vol. 137, pp. 154–161.
  17. Araujo J. V., Martins A., Leonor I. B., Pinho E. D., Reis R. L., Neves N. M. Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. J. Biomater. Sci. Polym. Ed., 2008, vol. 19, pp. 1261–1278.
  18. Engel J. Biominerals and Their Function in Different Organisms. In: A Critical Survey of Biomineralization. Control, Mechanisms, Functions and Material Properties. Cham, Springer, 2017, pp. 7–11. https://www.doi.org/10.1007/978-3-319-47711-4_3
  19. Lakshminarayanan R., Chi-Jin E. O., Loh X. J., Kini R. M., Valiyaveettil S. Purification and Characterization of a Vaterite-Inducing Peptide, Pelovaterin, from the Eggshells of Pelodiscussinensis (Chinese Soft-Shelled Turtle). Biomacromolecules, 2005, vol. 6, pp. 1429–1437. https://www.doi.org/10.1021/bm049276f  
  20. Liu L., He D., Wang G. S., Yu S. H. Bioinspired crystallization of CaCO3 coatings on electrospun cellulose acetate fiber scaffolds and corresponding CaCO3 microtube networks. Langmuir, 2011, vol. 27, pp. 7199–7206.
  21. Hadisi Z., Nourmohammadi J., Mohammadi J. Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration. Ceram. Int., 2015, vol. 41, pp. 10745–10754.
  22. Choi M. O., Kim Y. J. Fabrication of gelatin / cal[1]cium phosphate composite nanofibrous membranes by biomimetic mineralization. Int. J. Biol. Macromo., 2012, vol. l50, pp. 1188–1194.
  23. Donatan S., Yashchenok A., Khan N., Parakhonskiy B., Cocquyt M., Pinchasik B-E., Khalenkow D., Möhwald H., Konrad M., Skirtach A. The loading capacity versus the enzyme activity in new anisotropic and spherical vateritemicroparticles. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 14284–14292. https://www.doi.org/10.1021/acsami.6b03492
  24. Svenskaya Y., Parakhonskiy B. V., Haase A., Atkin V., Lukyanets E., Gorin D. A., Antolini R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys. Chem., 2013, vol. 182, pp. 11–15. https://www.doi.org/10.1016/j.bpc.2013.07.006
  25. Parakhonskiy B. V., Yashchenok A. M., Donatan S., Volodkin D. V., Tessarolo F., Antolini R., Möhwald H., Skirtach A. G. Macromolecule Loading into Spherical, Elliptical, Star-Like and Cubic Calcium Carbonate Carriers. ChemPhysChem, 2014, vol. 15, pp. 2817–2822. https://www.doi.org/10.1002/cphc.201402136
  26. Saveleva M. S., Ivanov A. N., Kurtukova M. O., Atkin V. S., Ivanova A. G., Lyubun G. P., Martyukova A. V., Cherevko E. I., Sargsyan A. K., Fedonnikov A. S., Norkin I. A., Skirtach A. G., Gorin D. A., Parakhonskiy B. V. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules : Synthesis, loading and in vivo applications. Materials Science and Engineering : C, 2018, vol. 85, pp. 57–67.
  27. Inozemtseva O. A., German S. V., Navolokin N. A., Bucharskaya A. B., Maslyakova G. N., Gorin D. A. Encapsulated Magnetite Nanoparticles : Preparation and Application as Multifunctional Tool for Drug Delivery Systems. Nanotechnology and Biosensors, 2018, vol. 85, pp. 175–192.
  28. Luo D., Poston R. N., Gould D. J., Sukhorukov G. B. Magnetically targetable microcapsules display subtle changes in permeability and drug release in response to a biologically compatible low frequency alternating magnetic field. Materials Science and Engineering : C, 2019, vol. 94, pp. 647–655.
  29. Levy M., Lagarde F., Maraloiu V. A., Blanchin M. G., Gendron F., Wilhelm C., Gazeau F. Degradability of superparamagnetic nanoparticles in a model of intracellular environment : Follow-up of magnetic, structural and chemical properties. Nanotechnology, 2010, vol. 21, 395103.
  30. German S. V., Bratashov D. N., Navolokin N. A., Kozlova A. A., Lomova M. V., Novoselova M. V., Burilova E. A., Zyev V. V., Khlebtsov B. N., Bucharskaya A. B., Terentyuk G. S., Amirov R. R., Maslyakova G. N., Sukhorukov G. B., Gorin D. A. In vitro and in vivo MRI visualization of nanocomposite biodegradable microcapsules with tunable contrast. Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 32238–32246. https://www.doi.org/10.1039/C6CP03895F
  31. German S. V., Navolokin N. A., Kuznetsova N. R., Zuev V. V., Inozemtseva O. A., Aniskov A. A., Volkova E. K., Bucharskaya A. B., Maslyakova G. N., Fakhrullin R. F., Terentyuk G. S., Vodovozova E. L., Gorin D. A. Liposomes loaded with hydrophilic magnetite nanoparticles : Preparation and application as contrast agents for magnetic resonance imaging. Colloids Surfaces B : Biointerfaces, 2015, vol. 135, pp. 109–115. https://www.doi.org/10.1016/j.colsurfb.2015.07.042
  32. Huang J., Luo C., Li W., Li Y., Zhang Y. S., Zhou J., Jiang Q. Eccentric magnetic microcapsules for orientation-specific and dual stimuli-responsivedrug release. J. Mater. Chem. B, 2015, vol. 3, pp. 4530–4538. https://www.doi.org/10.1039/C5TB00263J
  33. Long Y., Liu C., Zhao B., Song K., Yang G., Tung C.-H. Bio-inspired controlled release through compression–relaxation cycles of microcapsules. NPG Asia Materials, 2015, vol. 7, e148. https://www.doi.org/10.1038/am.2014.114
  34. Markides H., Rotherham M., Haj A. J. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. Journal of Nanomaterials, 2012, vol. 6, pp. 1–11. https://www.doi.org/10.1155/2012/614094
  35. Izadi A., Meshkini A., Entezari M. H. Mesoporous superparamagnetic hydroxyapatite nanocomposite : A multifunctional platform for synergistic targeted chemo-magnetotherapy. Materials Science and Engineering : C, 2019, vol. 101, pp. 27–41.
  36. German S. V., Novoselova M. V., Bratashov D. N., Demina P. A., Atkin V. S., Voronin D. V., Khlebtsov B. N., Parakhonskiy B. V., Sukhorukov G. B., Gorin D. A. High-efficiency freezing-induced loading of inorganic nanoparticles and proteins into micron-and submicron-sized porous particles. Scientific Reports, 2018, vol. 8, no. 1, pp. 17763–17773.
  37. Sergeeva A. S., Sergeev R. S., Lengert E. V., Zakharevich A. M., Parakhonskiy B., Gorin D. A., Sergeev S. A., Volodkin D. Composite magnetite and protein containing CaCO3 crystals. External manipulation and vaterite → calcite recrystallization-mediated release performance. ACS Applied Materials & Interfaces, 2015, vol. 7, no. 38, pp. 21315–21325.
  38. Elsdale T., Bard J. Collagen substrata for cell behavior. J. Cell. Biol., 1972, vol. 54, pp. 626–637.
  39. Han J. T., Xu X., Cho K. Sequential formation of calcium carbonate superstructure : From solid / hollow spheres to sponge-like solid films. Journal of Crystal Growth, 2007, vol. 308, pp. 110–116.
  40. Roth R., Schoelkopf J., Huwyler J., Puchkov M. Functionalized calcium carbonate microparticles for the delivery of proteins. Eur. J. Pharm. Biopharm., 2018, vol. 122, pp. 96–103.
  41. Parakhonskiy B., Haase A., Antolini R. Sub-Micron Vaterite Containers : Synthesis, Substance Loading, and Release. Angewandte Chemie International Edition, 2012, vol. 51, no. 5, pp. 1195–1197.
  42. Bukreeva T. V., Orlova O. A., Sulyanov S. N., Grigoriev Y. V., Dorovatovskiy P. V. A new approach to modification of polyelectrolyte capsule shells by magnetite nanoparticles. Crystallography Reports, 2011, vol. 56, no. 5, pp. 940–943.
  43. Svenskaya Y., Parakhonskiy B. V., Haase A., Atkin V., Lukyanets E., Gorin D. A., Antolini R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophysical Chemistry, 2013, vol. 182, pp. 11–15.
  44. Wang C., He C., Tong Z., Liu X., Ren B., Zeng F. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. International Journal of Pharmaceutics, 2006, vol. 308, no. 1, pp. 160–167.
  45. Fakhrullin R. F., Minullina R. T. Hybrid cellular-inorganic core-shell microparticles : Encapsulation of individual living cells in calcium carbonate microshells. Langmuir, 2009, vol. 25, no. 12, pp. 6617–6621.
  46. Yazdani F., Fattahi B., Azizi N. Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2016, vol. 406, pp. 207–211.
  47. Goya G. F., Grazu V., Ibarra M. R. Magnetic nanoparticles for cancer therapy. Curr. Nanosci., 2008, vol. 4, pp. 1–16.
  48. Rabias I., Tsitrouli D., Karakosta E., Kehagias T., Diamantopoulos G. Rapid magnetic heating treatment by highly charged maghemite nanoparticles on Wistarratsexocranial glioma tumors at microliter volume. Biomicrofluidics, 2010, vol. 4, pp. 2411–2425.
Received: 
31.12.2021
Accepted: 
17.01.2022
Published: 
31.03.2022