Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Yafarov R. K., Shanygin V. I., Nefedov D. V. Carbon Film Nanocomposite for High-Current Field Electron Sources. Izvestiya of Saratov University. Physics , 2019, vol. 19, iss. 1, pp. 68-75. DOI: 10.18500/1817-3020-2019-19-1-68-75

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 241)
Language: 
Russian
UDC: 
537.533.2

Carbon Film Nanocomposite for High-Current Field Electron Sources

Autors: 
Yafarov Ravil' Kiashshafovich, Saratov State University
Shanygin Vitaliy Iakovlevich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Nefedov Denis Vladimirovich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Abstract: 

Background and Objectives: Requirements and problems are formulated when creating cathode materials for high-current emission electronics. It has been shown that to create autocathodes with a current density of up to 100 A/cm2 and above, the development of new nanostructured carbon materials with a surface density of nanodiamond edges of not less than 106–108 cm-2 is necessary. Using a non-equilibrium low-pressure microwave plasma, the regions of regimes for obtaining carbon film coatings containing the diamond and graphite phases in various volume ratios are determined. Materials and Methods: Plasma-chemical deposition of carbon structures was carried out in a vacuum unit using a microwave ion-plasma source at a frequency of 2.45 GHz. Deposition was carried out on quartz and polycore substrates using ethanol vapor as a working substance at a pressure of from 0.05 Pa to 1.0 Pa. The substrates in the experiments were heated to a temperature of 300 ± 10° C. Studies of carbon structures were carried out using atomic-force and electron microscopy, as well as X-ray analysis and Raman scattering. Results: It was established experimentally and then substantiated using a cluster model of the structure of amorphous carbon, the influence of the mode of deposition of diamond-graphite film structures in the plasma of ethanol vapor on their field emission characteristics. The formation of more uniform and larger π-bonded graphite clusters helps to reduce the activation energy of conductivity in the composite structure and to improve the conditions of electron delivery to nanodiamond crystallites, which have a lower effective work function and higher degradation resistance. Conclusion: The developed technology of plasma-chemical deposition of nano-diamond graphite film structures allows the formation of emitters of cold electrons at temperatures from 250 to 350° C. This makes it possible to combine it with other microelectronic production technologies.

Reference: 

1. Mittal G., Lahiri I. Recent progress in nanostructured next-generation fi eld emission devices. J. Phys. D: Appl. Phys., 2014, vol. 47, pp. 323001. DOI: https://doi.org/10.1088/0022-3727/47/32/323001

2. Kumar S., Duesberg G. S., Pratap R., Raghavan S. Graphene fi eld emission devices. Appl. Phys. Lett., 2014, vol. 105, pp. 103107. DOI: https://doi.org/10.1063/1.4895022

3. Filip V., Filip L. D., Hei Wong. Review on peculiar issues of fi eld emission in vacuum nanoelectronic devices. Solid-State Electron., 2017, vol. 138, pp. 3–15. DOI: https://doi.org/10.1016/j.sse.2017.09.010

4. Cichy B., Gorecka-Drzazga A. Electron fi eld emission from microtip arrays. Vacuum, 2008, vol. 82, iss. 10, pp. 1062–1068. DOI: https://doi.org/10.1016/j.vacuum.2008.01.040

5. Castro C. P., Assis T. A. Degradation of a large area fi eld emitter: Correspondence between linearity and saturation in Fowler-Nordheim plots and unorthodox fi eld electron emission. Vacuum, 2018, vol. 152, pp. 50–56. DOI: https://doi.org/10.1016/j.vacuum.2018.03.001

6. Yinhang Zhang Kyong, Yop Rhee, David Hui, Soo-Jin Park. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Composites Part B, 2018, vol. 143, pp. 19–27. DOI: https://doi.org/10.1016/j.compositesb.01.028

7. Almazy v elektronnoj tekhnike [Diamonds in electronics]: sb. st. Otv. red. V. B. Kvaskov. Moscow, Energoatomizdat Publ., 1990. 248 p. (in Russian).

8. Elinson M. I., Vasil’ev G.F. Nenakalivaemye katody [Non-hot cathodes]. Moscow, Nauka Publ., 1974. 278 p. (in Russian).

9. Bell R. Emittery s otricatel’nym elektronnym srodstvom [Emitters with negative electron affinity]. Moscow, Gosenergoizdat Publ., 1973. 190 p. (in Russian).

10. Dimitrov D. A., Smithe D., Cary J. R., Ben-Zvi I., Rao T., Smedley J., Wang E. Modeling electron emission and surface effects from diamond cathodes. J. Appl. Phys., 2015, vol. 117, pp. 055708. DOI: https://doi.org/10.1063/1.4907393

11. Givargizov E. I., Zhirnov V. V., Stepanova A. N., Obelenskaya L. N. Matrichnyy avtoelektronnyy katod i elektronnyy pribor dlya opticheskogo otobrazheniya informatsii [Matrix autoelectronic cathode and electronic device for optical information display]. Patent RF no. 2074444, MPK H01J 31/12, 1997 (in Russian).

12. Terranova M. L., Orlanducci S., Rossi M., Tamburri E. Nanodiamonds for field emission: state of the art. Nanoscale, 2015, vol. 7, pp. 5094. DOI: https://doi.org/10.1039/c4nr07171a

13. Ledentsov N. N., Ustinov V. M., Shchukin V. A., Kop’ev P. S., Alferov Zh. I., Bimberg D. Quantum dot heterostructures: Fabrication, properties, lasers (Review). Semiconductors, 1998, vol. 32, iss. 4, pp. 385–410.

14. Spitsyn B. V., Zhevnenko S. N. Termokhimiya i termodinamika nanokristallov almaza [Thermochemistry and thermodynamics of diamond nanocrystals]. Uglerod: fundamental’nyye problemy nauki, materialovedeniye, tekhnologii: sb. tezisov dokladov 10-y mezhdunar. konf. Troitsk, Trovant Publ., 2016. 429 p. (in Russian).

15. Yafarov R. K. Fizika SVCh vakuumno-plazmennyh nanotekhnologij [Physics of microwave vacuum plasma nanotechnology]. Moscow, Fizmatlit Publ., 2009. 216 p. (in Russian).

16. Yafarov R. K. Nonequilibrium the Microwave Plasma of Low Pressure in Scientifi c Researches and Development Micro and Nanoelectronics. Izv. Saratov Univ. (N. S.), Ser. Physics, 2015, vol. 15, iss. 2, pp. 16‒31 (in Russian).

17. Saravanan A., Huang B. R., Sankaran K. J., Keiser G., Kurian J., Tai N. H., Lin I. N. Structural modifi cation of nanocrystalline diamond fi lms via positive/negative bias enhanced nucleation and growth processes for improving their electron fi eld emission properties. J. Appl. Phys., 2015, vol. 117, pp. 215307. DOI: https://doi.org/10.1063/1.4921875

18. Yafarov R. K., Nefedov D. V., Shanygin V. Ya. Issledovaniye planarno-tortsevoy avtoemissii nanokompozitnykh uglerodnykh pokrytiy s ul'tradispersnymi almazami [Investigation of the planar-end fi eld emission of nanocomposite carbon coatings with ultrafi ne diamonds]. Materialy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii "Aktual'nyye problemy elektronnogo priborostroyeniya": v 2 t. [International conference on Actual problems of electron devices engineering: in 2 vols.]. Saratov, Amirit Publ., 2018, vol. 1, pp. 147–154 (in Russian).

Краткое содержание:
(downloads: 189)