Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Nechaev V. V., Ziganshina O. D., Suchkova N. K. Calculation of Atomic Integrals with Exponentialy Correlated Functions. Izvestiya of Sarat. Univ. Physics. , 2012, vol. 12, iss. 1, pp. 18-25. DOI: 10.18500/1817-3020-2012-12-1-18-25

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 53)
Language: 
Russian
Heading: 
UDC: 
539.182/.184, 519.677

Calculation of Atomic Integrals with Exponentialy Correlated Functions

Autors: 
Nechaev Vladimir Vladimirovich, Saratov State University
Ziganshina Olga Dmitrievna, Saratov State Technical University named after Yuri Gagarin
Suchkova Natalia Konstantinovna, Saratov State University
Abstract: 

A new type of correlation atomic integrals occurring in variation energy calculations of three-particle Coulomb systems is studied. A integrand in them along with an interparticle distance linear term under an exponent additionally contains a quadratic term. It is demonstrated that these integrals are analytically expressed through Faddeeva function of a pure imaginary argument and its derivatives. A stable and fast algorithm for calculation of Faddeeva function derivatives to the twentieth order is developed. The test values of the studied special functions are provided.

Reference: 
  1. Shershakov D. A., Nechaev V. V., Berezin V. I. Exponential basis functions with quadratic dependence on interelectron distance for variational calculations of two-electron atoms // J. Phys. B. 2000. Vol. 33, № 1. P. 123–130.
  2. Calais J.-L., Löwdin P. O. A simple method of treating atomic integrals containing function of r12 // J. Mol. Spectr. 1962. Vol. 8, № 3. P. 203–211.
  3. Pekeris C. L. Ground state of two-electron atoms // Phys. Rev. 1958. Vol. 112, № 5. P. 1649–1658.
  4. Sack R. A., Roothan C. C. J., Kolos W. Recursive evalution of some atomic integrals // J. Math. Phys. 1967. Vol. 8, № 5. P. 1093–1094.
  5. Эфрос В. Д. Задача трех тел. Обобщенное экспоненциальное разложение, произвольные состояния в коррелированном базисе и энергия связи мезомо- лекул // Журн. эксперим. и теорет. физ. 1986. Т. 90, № 1. С. 10–24.
  6. Ley-Koo E., Bunge C. F., Jauregui R. Evalution of relativistic atomic integrals using perimetric coordinates // Intern. J. Quant. Chem. 1997. Vol. 63, № 1. P. 93–97.
  7. Фаддеева В. Н., Терентьев Н. М. Таблицы значений функции 2 2 0 ( ) (1 2 / ) z z t w z e i e dt = + π ∫ от комплексно- го аргумента. М., 1954. 268 с.
  8. Абрамовиц М., Стиган И. Справочник по специ- альным функциям. М., 1979. 832 с.
  9. Gautschi W. Efficient computation of the complex error function // SIAM J. Numer. Anal. 1970. Vol. 7, № 1. P. 187–198. 
  10. Poppe G. P. M., Wijers C. M. More efficient computation of the complex error function // ACM Trans. Math. Soft. 1990. Vol. 16, № 1. P. 38–46.
  11. Maplesoft, «Maple», Version 15, Waterloo Maple Inc. (2012). URL: http://www.maplesoft.com (дата обращения: 01.07.2012).
  12. Wolfram Research, Inc., «Mathematica», Version 8.0, Champaign, IL (2012). URL: http://www.wolfram.com (дата обращения: 01.07.2012).
  13. Джоунс У., Трон В. Непрерывные дроби / пер. с англ. М., 1985. 414 с.
  14. Cody W. J. Rational Chebyshev approximations for the error function // Math. Comput. 1969. Vol. 23, № 107. P. 631–637.