Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Davidovich M. V. About the envelope of the wave packet (pulse). Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 2, pp. 242-254. DOI: 10.18500/1817-3020-2025-25-2-242-254, EDN: ILZMKE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.06.2025
Full text:
(downloads: 193)
Language: 
Russian
Article type: 
Article
UDC: 
537.8:537.9:621.371
EDN: 
ILZMKE

About the envelope of the wave packet (pulse)

Autors: 
Davidovich Mikhail Vladimirovich, Saratov State University
Abstract: 

Background and Objectives: The methodological work considers the issues of the velocities and times of propagation of wave packets (pulses) through a medium layer of thickness d with dispersion. Methods: The spectral method of numerical calculation of the wave packet is used, taking into account the dispersion of the dielectric constant. Results: It has been shown that the output pulse appears no earlier than after time d/c, while it weakens and expands with the formation of a tail. Tunneling through a plasma layer has been numerically investigated, while no Hartmann-type tunneling paradoxes have been observed.

Acknowledgments: 
The work is partially supported by the Russian Science Foundation (project No. 16-19-10033) and by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Task (No. FSRR-2023-0008).
Reference: 
  1. Goldstein L. D., Zernov N. V. Electromagnitnye Polya i Volny [Electromagnetic fields and waves]. Moscow, Sovetskoe radio, 1971. 664 p. (in Russian).
  2. Akhiezer A. I., Akhiezer I. A. Electromagnetizm i Electromagnitnye Volny [Electromagnetism and Electromagnetic Waves]. Moscow, Vysshaya Skola, 1985. 504 p. (in Russian).
  3. Stratton J. A. Electromagnetic Theory. New York, London, McGraw-Hill Inc., 1941.
  4. Hauge E. H., Støvneng J. A. Tunneling times: A critical review. Rev. Mod. Phys., 1989, vol. 61, no. 4, pp. 917–936 (1989). https://doi.org/10.1103/RevModPhys.61.917
  5. Azbel M. Ya. Time tunneling and turbulence. Phys. Usp., 1989, vol. 41, no. 6, pp. 543–552. http://doi.org/10.1070/PU1998v041n06ABEH000402
  6. Shvartsburg A. B. Tunneling of electromagnetic waves: paradoxes and prospects. Phys. Usp., 2007, vol. 50, no. 1, pp. 37–51. https://doi.org/10.1070/PU2007v050n01ABEH006148
  7. Davidovich M. V. On the Hartman paradox, electromagnetic wave tunneling and supraluminal velocities (comment on “Tunneling of electromagnetic waves: paradoxes and prospects” by A B Shvartsburg). Phys. Usp., 2009, vol. 52, no. 4, pp. 415–418. https://doi.org/10.3367/UFNe.0179.200904o.0443
  8. Davidovich M. V. On times and speed of time-dependent quantum and electromagnetic tunneling. JETP, 2020, vol. 130, iss. 1, pp. 35–51. https://doi.org/10.1134/S1063776119120161
  9. Enders A., Nimtz G. Evanescent-mode propagation and quantum tunneling. Phys. Rev. E, 1993, vol. 48, pp. 632–634 (1993). https://doi.org/10.1103/PhysRevE.48.632
  10. Enders A., Nimtz G. Photonic-tunneling experiments. Phys. Rev. B, 1993, vol. 47, no. 1, pp. 9605–9609. https://doi.org/10.1103/PhysRevB.47.9605
  11. Nimtz G. Superluminal signal velocity. Annalen der Physik (Leipzig), 1998, vol. 7, pp. 618–624.
  12. Nimtz G., Heitmann W. Superluminal photonic tunneling and quantum electronics. Progress in Quantum Electronics, 1997, vol. 21, no. 2, pp. 81–108. https://doi.org/10.1016/S0079-6727(97)84686-1
  13. Steinberg A. M., Kwiat P. G., Chiao R. Y. Measurement of the Single-Photon Tunneling Time. Phys. Rev. Lett., 1993, vol. 71, pp. 708–711. https://doi.org/10.1103/PhysRevLett.71.708
  14. Chiao R. Y. Superluminal (but causal) propagation of wavepackets in transparent media with inverted atomic populations. Phys. Rev. A, 1993, vol. 48, pp. R34–R37. https://doi.org/10.1103/PhysRevA.48.R34
  15. Macke B., Ségard B. J. Material slow and fast light in a zero-dispersion configuration. Opt. Soc. America B, 2020, vol. 37, no. 7, pp. 2080–2087. https://doi.org/10.1364/JOSAB.389480
  16. Gaponenko S. V., Novitsky D. V. Wigner time for electromagnetic radiation in plasma. Phys. Rev. A, 2022, vol. 106, art. 023502. https://doi.org/10.1103/PhysRevA.106.023502
  17. Bukhman N. S., Bukhman S. V. On the negative delay time of a narrow-band signal as it passes through the resonant filter of absorption. Radiophysics and Quantum Electronics, 2004, vol. 47, pp. 68–76. https://doi.org/10.1023/B:RAQE.0000031672.70934.3a
  18. Davidovich M. V. Propagation of signals through a dissipative filter and the negative time delay. Technical Physics, 2012, vol. 57, pp. 328–335, https://doi.org/10.1134/S1063784212030048
  19. Ginzburg V. L. Teoreticheskaya Fizika i Astrofizika. Dopolnitel’nye Glavy [Theoretical Physics and Astrophysics. Additional Chapters]. Moscow, Nauka, 1987. 486 p. (in Russian).
  20. Rytov S. M. Some theorems on group velocity electromagnetic waves. J. Exp. Theor. Phys., 1947, vol. 17, pp. 930–936.
  21. Еhrеnfest P. Mißt der Aberrationawinkel im Fall einer Dispersion des Äthers die Wellengeschwindigkeit? Annalen der Physik (Leipzig), 1910, Bd. 33, H. 16, S. 1571–1576.
  22. Еhrеnfest P., Isakov L. D. About the so-called “group velocity”. In: Еhrеnfest P. Relativity. Quanta. Statistics. Мoscow, Nauka, 1972, pp. 22–32 (in Russian).
  23. MacColl L. A. Note on the transmission and reflection of wave packets by potential Barriers. Phys. Rev., 1932, vol. 40, pp. 621–626. https://doi.org/10.1103/PhysRev.40.621
  24. Wigner E. P. Lower limit for the energy derivative of the scattering phase shift, Phys. Rev., 1995, vol. 98, pp. 145–147. https://doi.org/10.1103/PhysRev.98.145
  25. Smith F. T. Lifetime matrix in collision theory. Phys. Rev., 1960, vol. 118, pp. 349–356. https://doi.org/10.1103/PhysRev.118.34
  26. Hartman T. E. Tunneling of a wave packet. J. Appl. Phys., 1962, vol. 33, pp. 3427–3433. https://doi.org/10.1063/1.1702424
  27. Vainshtein L. A., Wakman D. E. Frequency separation in the theory of vibrations and waves. Moscow, Nauka, 1983. 287 p. (in Russian).
  28. Davidovich M. V. Nonlinear tunneling of an electromagnetic wave through a plasma layer. Izvestiya of Saratov University. Physics, 2021, vol. 21, iss. 2, pp. 116–132. https://doi.org/10.18500/1817-3020-2021-21-2-116-132
  29. Davidovich M. V., Nefedov I. S. On the lifetimes of quasi-stationary levels during tunneling in a resonant tunnel structure. JETP, 2025, vol.167, no. 1, pp. 5–26. https://doi.org/10.18500/1817-3020-2021-21-2-116-132
  30. Vainshtein L. A. Propagation of pulses. Sov. Phys. Usp., 1976, vol. 19, pp. 189–205. https://doi.org/10.1070/PU1976v019n02ABEH005138
  31. Davidovich M. V. Hyperbolic metamaterials: Production, properties, applications, and prospects. Phys. Usp., 2019, vol. 62, pp. 1173–1207. https://doi.org/10.3367/UFNe.2019.08.038643
  32. Davidovich M. V. Electromagnetic energy density and velocity in a medium with anomalous positive dispersion. Technical Physics Letter, 2006, vol. 32, iss. 22, pp. 982–986. https://doi.org/10.1134/S106378500611023X
  33. Landau L. D., Lifshitz E. M. Electrodynamics of Continuous Media (Course of Theoretical Physics, vol. 8). New York, Pergamon Press, 1984. 474 p.
  34. Dwight G. B. Tables of integrals and other mathematical data. New York, Macmillan, 1961. 250 p.
  35. Ouchani N., El Moussaouy A., Aynaou H., El Hassouani Y., El Boudouti E. H., Djafari-Rouhani B. Superluminal and negative delay times in isotropicanisotropic one-dimensional photonic crystal. J. Appl. Phys., 2017, vol. 122, art. 183106. https://doi.org/10.1063/1.4999095
  36. Basov N. G., Ambartsumyan R. V., Zuev V. S., Kryukov P. G., Letokhov V. S. Nonlinear amplification of light pulses. Sov. Phys. JETP., 1966, vol. 23, no. 1, pp. 16–22.
Received: 
20.05.2024
Accepted: 
20.06.2024
Published: 
30.06.2025