Известия Саратовского университета.
ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


ансамбль связанных осцилляторов

Эффекты синхронизации двухслойной сети нелокально связанных хаотических отображений с диссипативной и инерционной связью

В настоящей работе представлены результаты численного исследования эффектов синхронизации в системе двух взаимодействующих ансамблей (колец) логистических отображений с нелокальной связью. Рассмотрены случаи вынужденной и взаимной синхронизации ансамблей при диссипативной и инерционной связи между ними. Параметры рассматриваемой системы выбраны таким образом, что в отсутствие связи в первом ансамбле сосуществуют амплитудные и фазовые химерные структуры, а второй ансамбль находится в режиме пространственно-временного хаоса.

Химерные структуры в ансамблях нелокально связанных отображений Спротта

В работе представлены результаты численного анализа особенностей пространственновременной динамики ансамблей нелокально связанных хаотических систем с дискретным временем с периодическими граничными условиями. Индивидуальные элементы исследуемых колец описываются двумерным и трехмерным отображениями Спротта, которые демонстрируют сценарии перехода к хаосу через квазипериодические движения. Локальная динамика индивидуальных элементов устанавливалась соответствующей режиму гиперхаоса.

Синхронизация химерных структур в ансамблях нелокально связанных кубических отображений

Исследуются явления взаимной и внешней синхронизации химерных структур в двух связанных ансамблях из дискретных отображений. Каждый из ансамблей представляет собой одномерное кольцо из нелокально связанных кубических отображений. Подбором параметров режим колебаний индивидуальных осцилляторов соответствовал хаотическому. С целью реализации отличающихся пространственно-временных структур в ансамблях, при отсутствии связи между ними, вводилась расстройка по параметрам нелинейности индивидуальных осцилляторов первого и второго ансамблей.

Пространственно-временные структуры в ансамбле нелокально связанных отображений Некоркина

В настоящей работе методами численного моделирования решается задача анализа механизма реализации пространственно-временных структур, содержащих так называемые «уединенные состояния». В зарубежной литературе указанный режим назван «solitary state» или «solitary state chimera» (SSC). Режим SSC исследуется в работе на примере динамики одномерного кольца нелокально связанных индивидуальных отображений Некоркина, моделирующих нейронную активность. Режим колебаний индивидуальных отображений выбирался отвечающим спайковым колебаниям, близким к периодическим.