Izvestiya of Saratov University.
ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Теоретическая и математическая физика

Dynamics in Measurements of the Non-Relativistic Particle Coordinates

Background and Objectives: There are a few different ways to change the quantum mechanical wave function. One is the continuous evolution according to the Schrodinger equation; the others are the collapse provided by strong measurements and the weak continuous measurement. The question arises: Can the strong measurement be considered as a dynamical process. Methods: To answer the question, a dynamic model is proposed to simulate numerically the measurement of the coordinates of quantum particles.

Numerical Modeling of the Physical Mechanism of Anomalous Heating of the Solar Atmosphere

 Background and Objectives: Processing and analysis of observational data on the study of physical processes occurring in the Sun's atmosphere at various stages of the activity cycle requires a systematic identification of stable components for all physical parameters related to the stationary solar atmosphere. The first attempts at numerical calculation of the structure of the stationary atmosphere gave a sharp discrepancy with direct measurements of the distribution of the physical parameters of the solar atmosphere in height.

Molecular Modeling and Vibrational Spectra of 4,4,’-clorobenzophenone

Vibrational infrared and Raman spectra of 4,4’-chlorobenzophenone have been measured at room temperature in the ranges 400–3200 and 0–3200 cm−1 respectively. Modeling of structure and vibrational spectra has been performed by a density functional theory method B3LYP/6-31+g(d) and 6-31-g(d). Energy, structure, components of the dipole moment and polarizability tensor, force constants, frequencies of normal modes in harmonic approximation and their intensities in the IR and Raman activity have been calculated. Interpretation of measured spectra is given.

AD HOC Quantization of the Electromagnetic Momentum for a Dispersive Medium

Background and Objectives: There are two types of linear field momentum in the macroscopic electrodynamics: Minkowski momentum, and Abraham momentum. The first is conserved inside the uniform substance, the second is included into the momentum balance in relation to the center of energy. These two quantities must comply with two measures of photon momentum. Unfortunately, the ad hoc quantization of the Minkowski momentum in dispersive medium leads to the theoretical photon momentum, which differs from the observed momentum.

IR Spectra of Triphenyl Phosphite and Their Interpretation by Molecular Modeling

Background and Objectives: IR spectra of triphenyl phosphite (TPhPh) were measured in liquid (at 320 K), glassy and glacial phases and in hexagonal (metastable) and monoclinic (stable) crystal phases at 12 K. The observed differences in the spectra is a consequence of the implementation of the conformers of different types in the sample. To substantiate this hypothesis, structurally dynamic models of the three most probable conformers (I –III) were built. The conformers are different in angles of rotation of the phenyl rings around the C-O bonds.

Pages

На сайте журнала 30.03.2023 запланированы технические работы. В это время сайт может быть недоступен. С уважением, администрация сайта.