Izvestiya of Saratov University.
ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Биофизика и медицинская физика

Monte Carlo Simulation of Laser Radiation Propagation in the Multilayers Model of Head and Brain Tissues in Health and in the Presence of Intracranial Hematoma

Background and Objectives: Development of new optical methods of non-contact express diagnostics of intracranial hematoma remains an actual task. The development of optical model of the head in norm and in the presence of intracranial hematoma is the aim of the present study. Influence of the dimensions of the head tissues with and without hematoma on distribution of the backscattered laser radiation intensity is discussed. Materials and Methods: The optical model of the head and brain tissues in norm and in the presence of intracranial hematoma is developed.

Investigation of the Interaction and Dynamics of Collagen and Collagenase Molecules in Solutions by Dynamic Light Scattering

Background and Objectives: Bacterial collagenase from Closrtidium histolyticum is widely used as a clinical tool in the nonsurgical treatment of Dupuytren’s disease in eye’s disorders treatment, for enzymatic debridement, for accelerated resorption of catgut sutures. Collagenase main feature is its ability to digest key protein of the animal extracellular matrix – collagen. Dynamic Light Scattering (DLS) technique allows for investigation of collagen and collagenase solutions in conditions close to physiological.

Albumin Conformational Changes During Glycation and Thermal Denaturation Processes Revealed by Fluorescence Spectroscopy and Small-angle X-ray Scattering

Background and Objectives: Objects of the research in this study are solutions of bovine serum albumin (BSA) and its aggregates. Structural changes of the protein molecules in solution with pH 3 and pH 7.4 are investigated during glycation and thermal denaturation processes, when the BSA molecules in solution undergo similar intermediate states. The main aim of the research is to compare structural changes of the BSA upon its glycation and thermal denaturation, revealed by combination of optical and X-ray techniques.

Leukocytes’ «Highlighting» Effect and its Application to Identify Blood Cells by Digital Microscopy Method

Objective: To find a way of identifying and counting of leukocytes in a native blood sample. Materials and equipments: Whole donor blood sample, digital microscop. Methods and approaches: The development of a method of leukocytes’ identification and counting for native blood samples was carried out on the basis of digital microscopy method. Main results: Leukocytes’ “highlighting” effect in a native blood sample was revealed experimentally by digital microscope examining.

Optical Doppler Methods for the Measurements of Flow Velocities of Biological Liquids

Background and Objectives: In this paper the key results obtained by the authors during the years of development of Doppler optical methods for quasi-elastic light scattering and coherence gating on biomedical liquids are presented. The research is focused on the sign sensitive velocity measurement and quantitative visualization of alternating and complex geometry flows using spectral approach to digital data processing of Doppler shift of the carrier frequency.

Estimation of Glucose Diffusion Coefficient in Human Dura Mater

Background and Objectives: Optical clearing of dura mater caused by hyperosmotic immersion liquids is important for the development of noninvasive methods of brain optical tomography and for the study of microcirculation and homeostasis of tissue fluids. It allows significantly increasing the spatial resolution and the probing depth of brain.

Study of Statistical Characteristics of GB-speckles, Forming at Scattering of Light on Virtual Structures of Nucleotide Gene Sequences of Enterobacteria

Background and Objectives: A brief review of methods of modern bioinformatics, based on the usage of virtual optical GBspeckles (gene-based speckles), has been presented in this paper. An algorithm of transformation of a nucleotide sequence into a 2D GB-speckle-structure has been proposed and discussed.

Mathematical Model of Vascular Tone Autoregulation

Background and Objectives: The conventional approach to study the blood circulat ion in the cardiovascular system of humans and animals is based on representation of the vascular system as a hierarchical structure of branching elastic tubes. While considerable progress has been achieved in the framework of this p aradigm, the other fails when one needs to analyze the dynamical patterns in networks of small arterial vessels.

Acoustoelectronic System for High Intensity Focused Ultrasonic Radiation Forming Aiming Nano- and Microsized Containers Opening

Background and Objectives: The aim of the study is to develop a system intended to the controlled release of preparations that were encapsulated to micro- and nanochambers. The system also allows to implement the optoacoustical diagnostics of the object by means of short light pulse radiation with the successive processing of the appeared ultrasonic signal. Short description: The system consists of two parts: electronic and acoustical ones. The electronic part represents a radiofrequency generator of electromagnetic radiation.

Prospects For Application of Upconversion Particles NaYF4:Er,Yb for Phototherapy

Background and Objectives: Functionalized upconversion particles allow for photodynamic and photothermal therapy of tumor with simultaneous temperature monitoring and visualization of the area of treatment. Upconversion particles can increase the depth of therapeutic effects due to the high penetration depth of the required excitation radiation. That is why they are a promising material for the combined phototherapy and simultaneous monitoring of biological tissue heating.

Pages