Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Full text:
(downloads: 251)
Language: 
Russian
UDC: 
517.9: 514.853: 621.373

From Anosov’s Dynamics on a Surface of Negative Curvature to Electronic Generator of Robust Chaos

Autors: 
Kuznetsov Sergey Petrovich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Abstract: 

Background and Objectives: Systems with hyperbolic chaos should be of preferable interest due to structural stability (roughness) that implies insensitivity to variation of parameters, manufacturing imperfections, interferences, etc. However, until recently, exclusively formal mathematical examples of this kind of dynamical behavior were known. It makes sense to turn to purposeful constructing the systems with hyperbolic dynamics appealing to tools of physics and electronics. Materials and Methods: Departing from a formal example of hyperbolic dynamics, that is a classical problem of geodesic flow on a surface of negative curvature, the idea is to modify the setup it in such way that the dynamical equations become appropriate to be associated with an electronic circuit hoping that due to the roughness the hyperbolic dynamics will survive this transformation. Results: The electronic scheme is elaborated and the dynamical equations are derived. Numerical integration of the equations and simulation of the electronic circuit using the software product NI Multisim supplemented with appropriate processing of the data obtained indicate correspondence of the observed dynamics with those for the geodesic flow. So, the system operates as a generator of robust chaos, at least in some wide range of parameters, and the produced signal has rather good spectral properties, without pronounced peaks and dips in the power spectral density distribution. Conclusion: Doe to roughness as the mathematically proven attribute of hyperbolic dynamics, the systems of this class seem preferable for practical applications of chaos. Although the circuit considered in the article operates at rather low frequencies (kilohertz), it seems possible to implement similar devices at high frequencies as well.

Reference: 

1. Sm ale S. Differentiable Dynamical Systems. Bull. Amer. Math. Soc. (NS), 1967, vol. 73, pp. 747–817. 2. Shilnikov L. Mathematical Problems of Nonlinear Dynamics: A Tutorial. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, vol. 7, no. 9, pp. 1353–2001. 3. Anosov D. V., Gould G. G., Aranson S. K., Grines V. Z., Plykin R. V., Safonov A. V., Sataev E. A., Shlyachkov S. V., Solodov V. V., Starkov A. N., Stepin A. M. Dynamical Systems IX: Dynamical Systems with Hyperbolic Behaviour (Encyclopaedia of Mathematical Sciences, vol. 9). Springer, 1995. 236 p. 4. Katok A., Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems, (Encyclopedia of Mathematics and its Applications, vol. 54). Cambridge, Cambridge Univ. Press, 1996. 824 p. 5. Sinaĭ Ya. G. The Stochasticity of Dynamical Systems. Selected Translations, Selecta Math. Soviet., 1981, vol. 1, no. 1, pp. 100–119. 6. Andronov A. A., Pontryagin L. S. Grubye sistemy [Systemes Grossiers]. Dokl. Akad. Nauk. SSSR, 1937, vol. 14, no. 5, pp. 247–250 (in Russian). 7. Andronov A. A., Vitt A. A., Khaĭkin S. Ė. Theory of Oscillators. Pergamon Press, 1966. 864 p. 8. Rabinovich M. I., Trubetskov D. I. Oscillations and Waves: In Linear and Nonlinear Systems. Springer Science & Business Media, 2012. 578 p. 9. Kuznetsov A. P., Kuznetsov S. P., Ryskin N. M. Nelinejnye kolebanija [Nonlinear Oscillations]. 2nd ed. Moscow, Fizmatlit, 2005. 292 p. (in Russian). 10. Banerjee S., Yorke J. A., Grebogi C. Robust Chaos. Physical Review Letters, 1998, vol. 80, no. 14, pp. 3049–3052. 11. Elhadj Z., Sprott J. C. Robust Chaos and Its Applications. World Scientifi c, Singapore, 2011. 472 p. 12. Dmitriev A. S., Efremova E. V., Maksimov N. A., Panas A. I. Generacija haosa [Generation of chaos]. Moscow, Technosfera, 2012. 424 p. (in Russian). 13. Anosov D. V. Dynamical Systems in the 1960s: The Hyperbolic Revolution. Mathematical Events of the Twentieth Century. Eds. A. A. Bolibruch, Yu. S. Osipov, Ya. G. Sinai. Springer-Verlag, Berlin, Heidelberg and PHASIS, Moscow, 2006, pp. 1–18. 14. Pesin Ya. B. Lectures on partial hyperbolicity and stable ergodicity. European Mathematical Society, 2004. 144 p. 15. Bonatti C., Diaz L. J., Viana M. Dynamics beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective. Berlin, Heidelberg, New York, Springer, 2005. 384 p. 16. Kuznetsov S. P. Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics. Physics– Uspekhi, 2011, vol. 54, no. 2, pp. 119–144. 17. Kuznetsov S. P. Hyperbolic Chaos: A Physicist’s View. Higher Education Press, Beijing and Springer-Verlag, Berlin, Heidelberg, 2012. 336 p. 18. Anosov D. V. Geodezicheskie potoki na zamknutyh rimanovyh mnogoobrazijah otricatel’noj krivizny [Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature]. Trudy Mat. Inst. Steklov, 1967, vol. 90, pp. 3–210 (in Russian). 19. Balazs N. L., Voros A. Chaos on the pseudosphere. Physics Reports, 1986, vol. 143, no. 3, pp. 109–240. 20. Bums K., Donnay V. J. Embedded surface with ergodic geodesic fl ows. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, vol. 7, pp. 1509–1527. 21. Aleksandrov A. D., Netsvetaev N. Yu. Geometrija [Geometry]. Moscow, Nauka, 1990. 672 p. (in Russian). 22. Struik D. J. Lectures on classical differential geometry. Courier Dover Publications, 1988. 240 p. 23. Meeks W. H., Pérez J., Pérez J. A survey on classical minimal surface theory. University Lecture Series, vol. 60. American Mathematical Society, 2012. 182 p. 24. Thurston W. P., Weeks J. R. The Mathematics of ThreeDimensional Manifolds. Scientific American, 1984, vol. 251, no. 1, pp. 94–106. 25. Hunt T. J., MacKay R. S. Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor. Nonlinearity, 2003, vol. 16, pp. 1499–1510. 26. Kuznetsov S. P. Haos v sisteme treh svjazannyh rotatorov: ot dinamiki Anosova k giperbolicheskomu attraktoru [Chaos in the System of Three Coupled Rotators: From Anosov Dynamics to Hyperbolic Attractor]. Izv. Saratov. Univ. (N. S.), Ser. Physics, 2015, vol. 15, iss. 2, pp. 5–17 (in Russian). 27. Kuznetsov S. P. Hyperbolic Chaos in Self–oscillating Systems Based on Mechanical Triple Linkage: Testing Absence of Tangencies of Stable and Unstable Manifolds for Phase Trajectories. Regular and Chaotic Dynamics, 2015, vol. 20, no. 6, pp. 649–666. 28. Kozlov V. V. Zamknutye orbity i haoticheskaja dinamika zarjada v periodicheskom jelektromagnitnom pole [Closed orbits and chaotic dynamics of a charged particle in a periodic electromagnetic fi eld]. Regular and Chaotic Dynamics, 1997, vol. 2, no. 1, pp. 3–12 (in Russian). 29. Arnold V. I. Geometrical methods in the theory of ordinary differential equations. Springer Science & Business Media, 2012. 351 p. 30. Gantmacher F. R. Lectures in Analytical Mechanics. Moscow, Mir, 1975. 31. Goldstein H., Poole Ch. P. Jr., Safko J. L. Classical Mechanics. 3rd ed. Boston, Mass., Addison-Wesley, 2001. 680 p. 32. Shakhgildyan V. V., Lyahovkin A. A. Sistemy fazovoj avtopodstrojki chastoty [Phase–Locked Loops]. Moscow, Svyaz’, 1972. 446 p. (in Russian). 33. Best Roland E. Phase-Locked Loops: Design, Simulation and Applications. 6th ed. McGraw Hill, 2007. 490 p. 34. Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Meccanica, 1980, vol. 15, pp. 9–30. 35. Schuster H. G., Just W. Deterministic Chaos: An Introduction. Wiley-VCH, 2005. 312 p. 36. Kuznetsov S. P. Dinamicheskij haos [Dynamical Chaos]. 2nd ed. Moscow, Fizmatlit, 2006. 356 p. (in Russian). 37. Lai Y.-C., Grebogi C., Yorke J. A., Kan I. How often are chaotic saddles nonhyperbolic? Nonlinearity, 1993, vol. 6, pp. 779–798. 38. Anishchenko V. S., Kopeikin A. S., Kurths J., Vadivasova T. E., Strelkova G. I. Studying hyperbolicity in chaotic systems. Physics Letters A, 2000, vol. 270, pp. 301–307. 39. Ginelli F., Poggi P., Turchi A., Chaté H., Livi R., Politi A. Characterizing Dynamics with Covariant Lyapunov Vectors. Physical Review Letters, 2007, vol. 99. 130601. 40. Kuznetsov S. P. Example of a Physical System with a Hyperbolic Attractor of the Smale–Williams Type. Physical Review Letters, 2005, vol. 95. 144101. 41. Kuznetsov S. P., Seleznev E. P. A strange attractor of the Smale–Williams type in the chaotic dynamics of a physical system. Journal of Experimental and Theoretical Physics, 2006, vol. 102, no. 2, pp. 355–364. 42. Kuptsov P. V. Fast numerical test of hyperbolic chaos. Physical Review E, 2012, vol. 85. 015203. 43. Kuznetsov S. P., Kruglov V. P. Verifi cation of Hyperbolicity for Attractors of Some Mechanical Systems with Chaotic Dynamics. Regular and Chaotic Dynamics, 2016, vol. 21, no. 2, pp. 160–174. 44. Kuznetsov S. P., Ponomarenko V. I. Realization of a Strange Attractor of the Smale-Williams Type in a Radiotechnical Delay-Fedback Oscillator. Technical Physics Letters, 2008, vol. 34, no. 9, pp. 771–773. 45. Baranov S. V., Kuznetsov S. P., Ponomarenko V. I. Haos v fazovoj dinamike oscilljatora van der Polja s modulirovannoj dobrotnost’ju i dopolnitel’noj zapazdyvajushhej obratnoj svjaz’ju [Chaos in the phase dynamics of qswitched van der Pol oscillator with additional delayed feedback loop]. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, no. 1, pp. 11–23 (in Russian). 46. Kuznetsov S. P. Plykin type attractor in electronic device simulated in MULTISIM. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2011, vol. 21, 043105. 47. Arzhanukhina D. S. Shemy jelektronnyh ustrojstv s giperbolicheskim haosom na osnove svjazannyh oscilljatorov Van der Polja [Diagram of the electronic hyperbolic chaos on the basis of related van der Pol oscillators]. Vestnik Saratov State Technical University, 2013, no. 3 (72), pp. 20–30 (in Russian). 48. Kuznetsov S. P., Ponomarenko V. I., Seleznev E. P. Autonomous system generating hyperbolic chaos: Circuit simulation and experiment. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 22, no. 2, pp. 36–49 (in Russian). 49. Isaeva O. B., Kuznetsov S. P., Sataev I. R., Savin D. V., Seleznev E. P. Hyperbolic Chaos and Other Phenomena of Complex Dynamics Depending on Parameters in a no.nautonomous System of Two Alternately Activated Oscillators. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, vol. 25, no. 12, 1530033.

Краткое содержание:
(downloads: 172)