For citation:
Zlochevskiy I. I., Zav’yalov D. V. Comparison of coarse-grained and all-atom “membrane-solvent” systems as models of memcapacitors under alternating electric field. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 4, pp. 449-459. DOI: 10.18500/1817-3020-2025-25-4-449-459, EDN: VRTKVY
Comparison of coarse-grained and all-atom “membrane-solvent” systems as models of memcapacitors under alternating electric field
Background and Objectives: The lipid membrane is one of the most important structures of a living cell, representing a barrier with selective permeability. Many biological processes are associated with changes in the concentration of positive and negative ions inside and outsidethe cell. Inthis regard, themembrane ismore widely represented as an electric capacitor. Inmodern studies onthe effect of an alternating field on biomolecular lipids, the existence of a nonlinear capacitance-voltage dependence is also mentioned, which makes the lipid membrane a promising candidate for the role of amemcapacitor. Since the use of practicalmembranemodels is associated with their instability, themolecular dynamics method has become widespread. A similar memory effect was obtained in studies using a coarse-grained model. On all-atom systems, this effect is poorly represented in the literature. The all-atom model more fully describes the interaction of particles, so it would be relevant to compare the coarse-grained and all-atomic membrane-solvent system as models of a memcapacitor under the influence of an alternating electric field. Materials and Methods: The studied system consisted of a lipid membrane immersed in an aqueous KCl solution. Two quantitatively similar systems consisted of 512 lipid molecules, such as dipalmitoylphosphatidylcholine (1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine), two water compartments of 40 Å and 3 M salt. Two types of force fields were used in the work, a all-atom charmm36m, as well as coarse-grained force fields martni22p and a modified force field – v2.2refPOL+refION. An alternating electric field with a strength of 0.5, 1.0 and 1.5 V/nm with a frequency of 1 GHz was applied to the systems. Molecular dynamics simulations were performed using GROMACS. Results: Under the action of the field, each system has behaved as a “classical” capacitor, where oppositely charged particles have been accumulated on opposite sides of the membrane. The nature of the ion distribution is also similar for the studied systems, positive particles are able to penetrate into the membrane, located inside the hydrophilic structures, and the charge peaks of negative particles are outside the membrane. A significant difference between the all-atom and coarse-grained models is the numerical value of the accumulated charge. Based on the results obtained, we can also talk about the nonlinear dependence of the total charge value in relation to the field strength value and the existence of the hysteresis effect. Conclusion: In this regard, the presented systems can be used to study the memcapacitive properties.
- El-Beyrouthy J., Freeman E. Characterizing the structure and interactions of model lipid membranes using electrophysiology. Membranes, 2021, vol. 11, iss. 5, art. 319. https://doi.org/10.3390/membranes11050319
- Taylor G. J., Venkatesan G. A., Collier C. P., Sarles S. A. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer. Soft Matter., 2015, vol. 11, iss. 38, pp. 7592–7605. https://doi.org/10.1039/c5sm01005e
- El-Beyrouthy J., Makhoul-Mansour M. M., Taylor G., Sarles S. A., Freeman E. C. A new approach for investigating the response of lipid membranes to electrocompression by coupling droplet mechanics and membrane biophysics. J. of the Royal Society Interface, 2019, vol. 16, iss. 161, art. 20190652. https://doi.org/10.1098/rsif.2019.0652
- Gross L. C. M., Heron J. R., Baca S. C., Wallace M. I. Determining membrane capacitance by dynamic control of droplet interface bilayer area. Langmuir, 2011, vol. 27, iss. 23, pp. 14335–14342. https://doi.org/10.1021/la203081v
- Najem J. S., Hasan M. S., Williams R. S., Weiss R. J., Rose G. S., Taylor G. J., Sarles S. A., Collier C. P. Dynamical nonlinear memory capacitance in biomimetic membranes. Nature Communications, 2019, vol. 10, iss. 1, art. 3239. https://doi.org/10.1038/s41467-019-11223-8
- Smirnova E. Y., Anosov A. A. Bilayer lipid membrane as memcapacitance: Capacitance-voltage pinched hysteresis and negative insertion conductance. Membranes, 2023, vol. 13, iss. 1, art. 97. https://doi.org/10.3390/membranes13010097
- Di Ventra M., Pershin Y. V. On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology, 2013, vol. 24, no. 25, art. 255201. https://doi.org/10.1088/0957-4484/24/25/255201
- Yin Z. Y., Tian H., Chen G. H., Chua L. O. What are memristor, memcapacitor and meminductor? IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, vol. 62, iss. 4, pp. 402–406. https://doi.org/10.1109/TCSII.2014.2387653
- Pershin Y. V., Di Ventra M. Memcapacitive neural networks. Electronics Letters, 2014, vol. 50, iss. 3, pp. 141–143. https://doi.org/10.1049/el.2013.2463
- Hsieh M. K., Yu Y., Klauda J. B. All-atom modeling of complex cellular membranes. Langmuir, 2021, vol. 38, iss. 1, pp. 3–17. https://doi.org/10.1021/acs.langmuir.1c02084
- Sharma P., Desikan R., Ayappa K. G. Evaluating coarsegrained MARTINI force-fields for capturing the ripple phase of lipid membranes. J. Phys. Chem. B, 2021, vol. 125, iss. 24, pp. 6587–6599. https://doi.org/10.1021/acs.jpcb.1c03277
- Guo J., Bao Y., Li M., Li S., Xi L., Xin P., Wu L., Liu H., Mu Y. Application of computational approaches in biomembranes: From structure to function. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, vol. 13, iss. 6, art. e1679. https://doi.org/10.1002/wcms.1679
- Periole X., Marrink S. J. The Martini coarse-grained force field. Biomolecular Simulations: Methods and Protocols, 2012, pp. 533–565. https://doi.org/10.1007/978-1-62703-017-5_20
- Polak A., Bonhenry D., Dehez F., Kramar P., Miklavčič D., Tarek M. On the electroporation thresholds of lipid bilayers: Molecular dynamics simulation investigations. J. of Membrane Biology, 2013, vol. 246, no. 11, pp. 843–850. https://doi.org/10.1007/s00232-013-9570-7
- S. A. Kirsch, R. A. Böckmann. Membrane pore formation in atomistic and coarse-grained simulations. Biochimica et Biophysica Acta (BBA) – Biomembranes, 2016, vol. 1858, no. 10, pp. 2266–2277. https://doi.org/10.1016/j.bbamem.2015.12.031
- Lavrentovich M. O., Carrillo J. M. Y., Collier C. P., Katsaras J., Bolmatov D. Curvature memory in electrically stimulated lipid membranes. Langmuir, 2025, vol. 41, iss. 5, pp. 3157–3165. https://doi.org/10.1021/acs.langmuir.4c03799
- Scott H. L., Bolmatov D., Premadasa U. I., Doughty B., Carrillo J. M. Y., Sacci R. L., Lavrentovich M., Collier C. P. Cations control lipid bilayer memcapacitance associated with long-term potentiation. ACS Applied Materials & Interfaces, 2023, vol. 15, iss. 37, pp. 44533–44540. https://doi.org/10.1021/acsami.3c09056
- Zlochevskiy I. I., Zav’yalov D. V. The effect of an alternating electric field on the DPPC membrane system in an aqueous NaCl solution. Math. Phys. Comp. Sim., 2023, vol. 26, no. 3, pp. 105–114. https://doi.org/10.15688/mpcm.jvolsu.2023.3.8
- Klauda J. B., Venable R. M., Freites J. A., O’Connor J. W., Tobias D. J., Mondragon-Ramirez C., Vorobyov I., MacKerell Jr. A. D., Pastor R. W. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B, 2010, vol. 114, iss. 23, pp. 7830–7843. https://doi.org/10.1021/jp101759q
- Marrink S. J., De Vries A. H., Mark A. E. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B, 2004, vol. 108, iss. 2, pp. 750–760. https://doi.org/10.1021/jp036508g
- Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., de Vries A. H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B, 2007, vol. 111, iss. 27, pp. 7812–7824. https://doi.org/10.1021/jp071097f
- Wassenaar T. A., Ingolfsson H. I., Bockmann R. A., Tieleman D. P., Marrink S. J. Computational lipidomics with insane: A versatile tool for generating custom membranes for molecular simulations. J. of Chemical Theory and Computation, 2015, vol. 11, iss. 5, pp. 2144–2155. https://doi.org/10.1021/acs.jctc.5b00209
- Michalowsky J., Michalowsky J., Schafer L. V., Holm C., Smiatek J. A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions. J. Chem. Phys., 2017, vol. 146, iss. 5, art. 054501. https://doi.org/10.1063/1.4974833
- Michalowsky J., Zeman J., Holm C., Smiatek J. A polarizable MARTINI model for monovalent ions in aqueous solution. J. Chem. Phys., 2018, vol. 149, iss. 16, art. 163319. https://doi.org/10.1063/1.5028354
- Souza P. C. T., Alessandri R., Barnoud J., Thallmair S., Faustino I., Grünewald F., Patmanidis I., Abdizadeh H., Bruininks B. M. H., Wassenaar T. A., Kroon P. C., Melcr J., Nieto V., Corradi V., Khan H. M., Domański J., Javanainen M., Martinez-Seara H., Reuter N., Best R. B., Vattulainen I., Monticelli L., Periole X., Tieleman D. P., de Vries A. H., Marrink S. J. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nature Methods, 2021, vol. 18, pp. 382–388. https://doi.org/10.1038/s41592-021-01098-3
- Miyazaki Y., Okazaki S., Shinoda W. PSPICA: A coarse-grained force field for lipid membranes based on a polar water model. J. of Chemical Theory and Computation, 2020, vol. 16, iss. 1, pp. 782–793. https://doi.org/10.1021/acs.jctc.9b00946A
- Pastor R. W., MacKerell A. D. Development of the CHARMM force field for lipids. J. Phys. Chem. Lett., 2011, vol. 2, iss. 13, pp. 1526–1532. https://doi.org/10.1021/jz200167q
- Basdevant N., Dessaux D., Ramirez R. Ionic transport through a protein nanopore: A Coarse-Grained Molecular Dynamics Study. Scientific Reports, 2019, vol. 9, iss. 1, art. 15740. https://doi.org/10.1038/s41598-019-51942-y
- Jo S., Kim T., Iyer V. G., Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comp. Chem., 2008, vol. 29, iss. 11, pp. 1859–1865. https://doi.org/10.1002/jcc.20945
- Patra M., Karttunen M., Hyvönen M. T., Falck E., Lindqvist P., Vattulainen I. Molecular dynamics simulations of lipid bilayers: Major artifacts due to truncating electrostatic interactions. Biophysical Journal, 2003, vol. 84, iss. 6, pp. 3636–3645. https://doi.org/10.1016/S0006-3495(03)75094-2
- 82 reads