For citation:
Berezin K. V., Stepanovich E. Y., Dvoretsky K. N., Antonova E. M., Likhter A. M., Yanina I. Y. Hydrogen bonding in saturated acids triglyceride monohydrates: MD and DFT modeling. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 4, pp. 425-437. DOI: 10.18500/1817-3020-2025-25-4-425-437, EDN: LXEQFE
Hydrogen bonding in saturated acids triglyceride monohydrates: MD and DFT modeling
Background and Objectives: Triglycerides, as the primary components of fats and oils, play a crucial role in various scientific and industrial fields, including food production, energy, and pharmaceuticals. Their interaction with water molecules is particularly significant, yet many aspects of these interactions remain poorly understood. This study aims to investigate hydrogen bonding in monohydrates of saturated fatty acid triglycerides using molecular dynamics (MD) and density functional theory (DFT) simulations. The objectives include determining the thermodynamic parameters of association, analyzing the influence of hydrocarbon chain length on hydration, and identifying the most stable hydration configurations. Materials and Methods: The study employed classical molecular dynamics (GROMACS) with the AMBER-03 force field and DFT calculations (B3LYP/6-31+G(d) and wB97XD/6-311+G(d,p)) to model hydrogen bonds in monohydrates of triglycerides ranging from triacetin to tristearin (chain lengths of 0 to 16 methylene groups). The MD simulations involved a 4×4×4 nm periodic boundary cell with a triglyceride molecule surrounded by water, run for 500 ps at 300 K and 1 bar. Hydrogen bonds were identified using geometric criteria (distance ≤ 3.5 Å, angle ≤ 30°). DFT calculations optimized molecular structures and calculated thermodynamic parameters, including association energies, enthalpies, and equilibrium constants. Results: The results have revealed that carbonyl groups of the central ester chain are the primary sites for hydrogen bond formation. Monohydrates involving the central chain (Type 1) have exhibited a greater stability than those involving side chains (Type 2). The association energy for Type 1 monohydrates has saturated starting from tricaprylin (chain length of 6). A linear relationship has been observed between the thermodynamic parameter TΔS and the equilibrium constant Kα for Type 1 monohydrates, attributed to the loss of conformational entropy upon hydration. Non-classical hydrogen bonds (C-H···O) have also contributed to the stability of monohydrates, influencing their spatial structure. The study has found that hydration of longer chains requires higher energy to overcome entropy losses. Conclusion: The study has demonstrated that the central carbonyl group of triglycerides is the primary hydration site, with Type 1 monohydrates being more stable than Type 2. The association energy and enthalpy reach saturation for chains longer than tricaprylin, while linear dependencies of TΔS and Kα on chain length highlight the role of conformational entropy in hydration. These findings enhance the understanding of triglyceridewater interactions, providing insights relevant to food science, pharmaceuticals, and the development of lipid-based delivery systems. The combined use of MD and DFT has proved effective for analyzing these complex molecular interactions.
- McClements D. J. Food Emulsions: Principles, Practices, and Techniques. 3rd edition. Boca Raton, CRC Press, 2015. 714 p. https://doi.org/10.1201/b18868
- Ravotti R., Worlitschek J., Pulham C., Stamatiou A. Triglycerides as novel phase-change materials: A review and asessment of their thermal properties. Molecules, 2020, vol. 25, iss. 23, art. 5572. https://doi.org/10.3390/molecules25235572
- Tascini A. S., Noro M. G., Chen R., Seddon J. M., Bresme F. Understanding the interactions between sebum triglycerides and water: A molecular dynamics simulation study. Phys. Chem. Chem. Phys., 2018, vol. 20, iss. 3, pp. 1848–1860. https://doi.org/10.1039/C7CP06889A
- Chumpitaz L. D. A., Coutinho L. F., Meirelles A. J. A. Surface tension of fatty acids and triglycerides. J. Amer. Oil Chem. Soc., 1999, vol. 76, iss. 3, pp. 379–382. https://doi.org/10.1007/s11746-999-0245-6
- Javadi A., Dowlati S., Shourni S., Rusli S., Eckert K., Miller R., Kraume M. Enzymatic hydrolysis of triglycerides at the water–oil interface studied via interfacial rheology analysis of lipase adsorption layers. Langmuir, 2021, vol. 37, iss. 44, pp. 12919–12928. https://doi.org/10.1021/acs.langmuir.1c01963
- Caruso B., Wilke N., Perillo M. A. Triglyceride lenses at the air–water interface as a model system for studying the initial stage in the biogenesis of lipid droplets. Langmuir, 2021, vol. 37, iss. 37, pp. 10958–10970. https://doi.org/10.1021/acs.langmuir.1c01359
- Kinard T. C., Wrenn S. P. Triglycerides stabilize water/organic interfaces of changing area via conformational flexibility. Langmuir, 2024, vol. 40, iss. 5, pp. 2500–2509. https://doi.org/10.1021/acs.langmuir.3c02473
- Cao Y., Marra M., Anderson B. D. Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles. J. Pharm Sci., 2004, vol. 93, iss. 11, pp. 2768–2779. https://doi.org/10.1002/jps.20126
- Benedikt T., Briesen K. H. Water–triglyceride interfaces limit permeability and diffusion of aromamolecules in butter. Eur. J. Lipid Sci. Technol., 2024. vol. 126, iss. 12, art. 2300248. https://doi.org/10.1002/ejlt.202300248
- Groot C. C. M., Velikov K. P., Bakker H .J. Structure and dynamics of water molecules confined in triglyceride oils. Phys. Chem. Chem. Phys., 2016, vol. 18, iss. 42, pp. 29361–29368. https://doi.org/10.1039/C6CP05883C
- Papageorgiou D. G., Demetropoulos I. N., Lagaris I. E., Papadimitriou P. T. How many conformers of the 1,2,3-propanetriol triacetate are pin gas phase and in aqueous solution? Tetrahedron, 1996, vol. 52, iss. 2, pp. 677–686. https://doi.org/10.1016/0040-4020(95)00918-3
- Berezin K. V., Dvoretskii K. N., Chernavina M. L., Novoselova A. V., Nechaev V. V., Likhter A. M., Shagautdinova I. T., Smirnov V. V., Antonova E. M., Grechukhina O. N. The use of IR spectroscopy and density functional theory for estimating the relative concentration of triglycerides of oleic and linoleic acids in a mixture of olive and sunflower seed oils. Opt. Spectrosc., 2019, vol. 127, iss. 6, pp. 955–961. https://doi.org/10.1134/S0030400X1912004X
- Berezin K. V., Dvoretskii K. N., Chernavina M. L., Novoselova A. V., Nechaev V. V., Antonova E. M., Shagautdinova I. T., Likhter A. M. The Use of Raman spectroscopy and methods of quantum chemistry for assessing the relative concentration of triglycerides of oleic and linoleic acids in a mixture of olive oil and sunflower seed oil. Opt. Spectrosc., 2018, vol. 125, iss. 3, pp. 311–316. https://doi.org/10.1134/S0030400X18090059
- Berezin K. V., Antonova E. M., Shagautdinova I. T., Chernavina M. L., Dvoretskiy K. N., Grechukhina O. N., Vasilyeva L. M., Rybakov A. V., Likhter A. M. FTIR spectrum of grape seed oil and quantum models of fatty acids triglycerides. Proc. SPIE, 2018, vol. 10716, art. 1071625. https://doi.org/10.1117/12.2316488
- Van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark E. A., Berendsen H .J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, vol. 26, iss. 16, pp. 1701–1718. https://doi.org/10.1002/jcc.20291
- Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comp. Chem., 2003, vol. 24, iss. 16, pp. 1999–2012. https://doi.org/10.1002/jcc.10349
- Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R., Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, vol. 81, iss. 8, pp. 3884–3690. https://doi.org/10.1063/1.448118
- Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, vol. 14, iss. 1, pp. 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
- Loof H. D., Nilsson L., Rigler R., Molecular dynamics simulation of galanin in aqueous and nonaqueous solution. J. Am. Chem. Soc., 1992, vol. 114, iss. 11, pp. 4028–4035. https://doi.org/10.1021/ja00037a002
- Frisch M. J., Trucks G., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M. [et al.]. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009.
- Kollipost F., Wugt Larsen R., Domanskaya A. V., Nörenberg M., Suhm M. A., Communication: The highest frequency hydrogen bond vibration and an experimental value for the dissociation energy of formic acid dimer. J. Chem. Phys., 2012, vol. 136, iss. 15, art. 151101. https://doi.org/10.1063/1.4704827
- Rocher-Casterline B. E., Ch’ng L. C., Mollner A. K., Reisler H. Communication: Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging. J. Chem. Phys., 2011, vol. 134, iss. 21, art. 211101. https://doi.org/10.1063/1.3598339
- Nakayama T., Fukuda H., Kamikawa T., Sakamoto Y. Sugita A., Kawasaki M., Amano T., Sato H., Sakaki S., Morino I., Inoue G. Effective interaction energy of water dimer at room temperature: An experimental and theoretical study. J. Chem. Phys., 2007, vol. 127, iss. 13, art. 134302. https://doi.org/10.1063/1.2773726
- Ruscic B. Active thermochemical tables: Water and Water Dimer. J. Phys. Chem. A, 2013, vol. 117, iss. 46, pp. 11940–11953. https://doi.org/10.1021/jp403197t
- Becke A. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, vol. 98, iss. 7, pp. 5648–5652. https://doi.org/10.1063/1.464913
- Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, vol. 37, iss. 2, pp. 785–789. https://doi.org/10.1103/PhysRevB.37.785
- Chai J.-D., Head-Gordon M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys, 2008, vol. 128, iss. 8, art. 084106. https://doi.org/10.1063/1.2834918
- Simon S., Duran M., Dannenberg J. How does basis set superposition error change the potential surfaces for hydrogen‐bonded dimers? J. Chem. Phys., 1996, vol. 105, iss. 24, pp. 11024–11031. https://doi.org/10.1063/1.472902
- Fayfel A. B., Berezin K. V. Program for calculating thermodynamic characteristics of intermolecular complexes based on quantum-mechanical calculations. Tuchin V. V., ed. Problemy opticheskoj fiziki: Materialy 7 Mezhdunarodnoj molodezhnoj nauchnoj shkoly po optike, lazernoj fizike i biofizike. Vol. 2 [Problems of Optical Physics: Proceedings of the 7th International youth scientific school on optics, laser physics and biophysics. Vol. 2]. Saratov, The State Scientific Center “College” Publ., 2004, pp. 100–101 (in Russian).
- Iogansen A. V. Infrared spectroscopy and spectral determination of hydrogen bond energy. In: Sokolov N. D., ed. Vodorodnaya svyaz’ [Hydrogen bond]. Moscow, Nauka, 1981, pp. 112–155 (in Russian).
- 92 reads