Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Kurbako A. V., Hramkov A. N., Borovkova E. I., Dubinkina E. S., Ishbulatov Y. M., Ponomarenko V. I., Karavaev A. S., Prokhorov M. D. Hardware-software complex for diagnostics of a human psychophysiological state during the solving of cognitive tasks. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 1, pp. 19-29. DOI: 10.18500/1817-3020-2024-24-1-19-29, EDN: UFAMDM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.03.2024
Full text:
(downloads: 167)
Language: 
Russian
Article type: 
Article
UDC: 
530.182:537.86
EDN: 
UFAMDM

Hardware-software complex for diagnostics of a human psychophysiological state during the solving of cognitive tasks

Autors: 
Kurbako Aleksandr Vasilievich, Saratov State University
Hramkov Aleksey N., Saratov State University
Borovkova Ekaterina Igorevna, Saratov State University
Dubinkina Elizaveta S., Saratov State University
Ishbulatov Yurii Mikhailovich, Saratov State University
Ponomarenko Vladimir Ivanovich, Saratov State University
Karavaev Anatoly Sergeevich, Saratov State University
Prokhorov Mikhail Dmitrievich, Saratov State University
Abstract: 

Background and Objectives: Psychological state of a person can change under conditions of cognitive load. Excessive cognitive load can lead to distress, which reduces performance. Diagnosis of changes in the psychophysical state in the process of performing cognitive tasks is important for human health and increasing the efficiency of his work. Therefore, the purpose of the study is to develop a hardware and software complex for diagnosing the psychophysiological state of a person in the process of solving cognitive problems. Materials and Methods: Electroencephalogram signals were recorded using a developed device and a certified standard recorder during a biological experiment. A comparison was made of the diagnostic capabilities of the developed hardware-software complex and a serial device. Results: A hardware-software complex has been developed for diagnosing the psychophysiological state of a person in the process of solving cognitive problems using an electroencephalogram signal. The developed system has shown sensitivity and specificity values close to those of the serial recorder. Using the developed complex, the electroencephalogram channels suitable for diagnosing the psychophysical state have been selected. Conclusion: The developed hardware-software complex can be used to diagnose the psychophysiological state of a person in the process of performing cognitive tasks.

Acknowledgments: 
This research was supported from the Russian Federal Academic Leadership Program “Priority 2030” at the Immanuel Kant Baltic Federal University.
Reference: 
  1. Il’in E. P. Teoriia funktsional’nykh sistem v fiziologii i psikhologii [Theory of functional systems in physiology and psychology]. Moscow, Nauka, 1978. 383 p. (in Russian).
  2. Levitov N. D. O psikhicheskikh sostoianiiakh cheloveka [About human mental states]. Moscow, Prosveshchenie, 1964. 360 p. (in Russian).
  3. Hebb D. O. Drives and the C. N. S. (conceptual nervous system). Psychological Review, 1955, vol. 62, iss. 4, pp. 243–254. https://doi.org/10.1037/h0041823
  4. Giannakakis G., Grigoriadis D., Giannakaki K., Simantiraki O., Roniotis A., Tsiknakis M. Review on psychological stress detection using biosignals. IEEE Transactions on Affective Computing, 2022, vol. 13, iss. 1, pp. 440–460. https://doi.org/10.1109/TAFFС.2019.2927337
  5. Kirschbaum C., Hellhammer D. H. Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 1994, vol. 19, iss. 4, pp. 313–333. https://doi.org/10.1016/0306-4530(94)90013-2
  6. Hanrahan K., McCarthy A. M., Kleiber C., Lutgendorf S., Tsalikian E. Strategies for salivary cortisol collection and analysis in research with children. Appl. Nurs. Res., 2006, vol. 19, iss. 2, pp. 95–101. https://doi.org/10.1016/j.apnr.2006.02.001
  7. Engert V., Vogel S., Efanov S. I., Duchesne A., Corbo V., Ali N., Pruessner J. C. Investigation into the cross-correlation of salivary cortisol and alpha-amylase responses to psychological stress. Psychoneuroendocrinology, 2011, vol. 36, iss. 9, pp. 1294–1302. https://doi.org/10.1016/j.psyneuen.2011.02.018
  8. Puterman E., O’Donovan A., Adler N. E., Tomiyama A. J., Kemeny M., Wolkowitz O. M., Epel E. Physical activity moderates effects of stressor-induced rumination on cortisol reactivity. Psychosom. Med., 2011, vol. 73, iss. 7, pp. 604–611. https://doi.org/10.1097/PSY.0b013e318229e1e0
  9. Al-shargie F. M., Tang T. B., Babruddin N., Kiguchi M. Mental stress quantification using EEG signals. International Conference for Innovation in Biomedical Engineering and Life Sciences, 2016, vol. 56, pp. 15–19.
  10. Schleifer L. M., Spalding T. W., Kerick S. E., Cram J. R., Ley R., Hatfield B. D. Mental stress and trapezius muscle activation under psychomotor challenge: A focus on EMG gaps during computer work. Psychophysiology, 2008, vol. 45, iss. 3, pp. 356–365. https://doi.org/10.1111/j.1469-8986.2008.00645.x
  11. Dikecligil G. N., Mujica-Parodi L. R. Ambulatory and challenge-associated heart rate variability measures predict cardiac responses to real-world acute emotional stress. Biol. Psychiatry, 2010, vol. 67, iss. 12, pp. 1185–1190. https://doi.org/10.1016/j.biopsych.2010.02.001
  12. Carroll D., Phillips A. C., Der G., Hunt K., Benzeval M. Blood pressure reactions to acute mental stress and future blood pressure status: Data from the 12-year follow-up of the West of Scotland Stud. Psychosom. Med., 2011, vol. 73, iss. 9, pp. 737–742. https://doi.org/10.1097/PSY.0b013e3182359808
  13. Setz C., Arnrich B., Schumm J., La Marca R., Tröster G., Ehlert U. Discriminating Stress From Cognitive Load Using a Wearable EDA Device. Transactions on Information Technology in Biomedicine, 2010, vol. 14, iss. 2, pp. 410–417. https://doi.org/10.1109/TITB.2009.2036164
  14. Prokhorov M. D., Borovkova E. I., Hramkov A. N., Dubinkina E. S., Ponomarenko V. I., Ishbulatov Y. M., Kurbako A. V., Karavaev A. S. Changes in the Power and Coupling of Infra-Slow Oscillations in the Signals of EEG Leads during Stress-Inducing Cognitive Tasks. Appl. Sci., 2023, vol. 13, iss. 14, article no. 8390. https://doi.org/10.3390/app13148390
  15. Borovkova E. I., Hramkov A. N., Dubinkina E. S., Ponomarenko V. I., Bezruchko B. P., Ishbulatov Yu. M., Kurbako A. V., Karavaev A. S., Prokhorov M. D. Biomarkers of the psychophysiological state during the cognitive tasks estimated from the signals of the brain, cardiovascular and respiratory systems. Eur. Phys. J., 2023, Spec. Top. 232, pp. 625–633. https://doi.org/10.1140/epjs/s11734-022-00734-z
  16. Everly G. S., Lating J. M. The Anatomy and Physiology of the Human Stress Response. A Clinical Guide to the Treatment of the Human Stress Response. Springer, 2013, pp. 17–51.
  17. Aladjalova N. A. Infra-Slow Rhythmic Oscillations of The Steady Potential of the Cerebral Cortex. Nature, 1957, vol. 179, pp. 957–959. https://doi.org/10.1038/179957a0
  18. Galimov N. M., Vil’danov E. R., Khidiiatov I. I., Kal’met’ev A. Kh., Sultanov A. F., Valiullin R. Ch. Ultraslow physiological processes of the human and animal brain in experimental clinical studies. Meditsinskii vestnik Bashkortostana [Medical Bulletin of Bashkortostan], 2009, vol. 4, iss. 3, pp. 63–69 (in Russian).
  19. Lorincz M. L., Geall F., Bao Y., Crunelli V., Hughes S. W. ATP-Dependent Infra-Slow (<0.1 Hz) Oscillations in Thalamic Networks. PLoS ONE, 2009, vol. 4, iss. 2, article no. e4447. https://doi.org/10.1371/journal.pone.0004447
  20. Knyazev G. G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neuroscience and Biobehavioral Reviews, 2012, vol. 36, iss. 1, pp. 677–695. https://doi.org/10.1016/j.neubiorev.2011.10.002
  21. Lambertz M., Langhorst P. Simultaneous changes of rhythmic organization in brainstem neurons, respiration, cardiovascular system and EEG between 0.05 Hz and 0.5 Hz. Journal of the Autonomic Nervous System, 1998, vol. 68, pp. 58–77. https://doi.org/10.1016/s0165-1838(97)00126-4
  22. Vandenhouten R., Lambertz M., Langhorst P., Grebe R. Nonstationary Time-Series Analysis Applied to Investigation of Brainstem System Dynamics. IEEE Transactions on Biomedical Engineering, 2000, vol. 47, iss. 6, pp. 729–737. https://doi.org/10.1109/10.844220
  23. Ahn J. W., Ku Y., Kim H. C. A Novel Wearable EEG and ECG Recording System for Stress Assessment. Sensors, 2019, vol. 19, iss. 9. https://doi.org/10.3390/s19091991
  24. Stroop J. R. Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 1935, vol. 18, iss. 6, pp. 643–662. https://doi.org/10.1037/h0054651
  25. Schneider G. M., Jacobs D. W., Gevirtz R. N., O’Connor D. T. Cardiovascular haemodynamic response to repeated mental stress in normotensive subjects at genetic risk of hypertension: Evidence of enhanced reactivity, blunted adaptation, and delayed recovery. Hum. J. Hypertens, 2003, vol. 17, pp. 829–840. https://doi.org/10.1038/sj.jhh.1001624
  26. Elektroentsefalograf-registrator “Entsefalan-EEGR-19/26” (Electroencephalograph-recorder “Encephalan-EEGR-19/26”). Available at: http://medicom-mtd.com/htm/Products/eegr- main.html (accessed October 11, 2023) (inRussian).
  27. Maksimova M. V., Etuev Kh. Kh. Experience of using EEG in education: Analysis of foreign studies. Otechestvennaia i zarubezhnaia pedagogika [Domestic and Foreign Pedagogy], 2023, vol. 1, no. 2 (91), pp. 169–185. https://doi.org/10.24412/2224-0772-2023-91-169-185 (in Russian).
  28. Bubnova A. E. Integrated use of neurophysiological and subjective criteria for the development of a critical level of fatigue with physiological support of Emergency Situations Ministry operators. Zhurn. med.-biol. issledovanii [Journal Med.-Biol. Research], 2020, vol. 8, no. 1, pp. 5–13. https://doi.org/10.17238/issn2542-1298.2020.8.1.5 (in Russian).
Received: 
19.10.2023
Accepted: 
20.11.2023
Published: 
01.03.2024