Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Berezin K. V., Nechaev V. V., Kozlov O. V., Novoselova A. V., Chernavina M. L., Berezin V. I., Berezin M. K., Novoselov V. V. The Manifestation’s Research of the Pair Association in the Pyridine’s Ir-Spectrums by the Matrix Isolation Technique. Izvestiya of Saratov University. Physics , 2015, vol. 15, iss. 1, pp. 14-20. DOI: 10.18500/1817-3020-2015-15-1-14-20

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
06.03.2015
Full text:
(downloads: 252)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.182/.184, 519.677

The Manifestation’s Research of the Pair Association in the Pyridine’s Ir-Spectrums by the Matrix Isolation Technique

Autors: 
Berezin Kirill Valentinovich, Saratov State University
Nechaev Vladimir Vladimirovich, Saratov State University
Kozlov Oleg Vadimovich, Saratov State University
Novoselova Anna Vladimirovna, Saratov State University
Chernavina Mariya Leonidovna, Saratov State University
Berezin Valentine Ivanovich, Saratov State University
Berezin Maxim Kirillovich, Saratov State University
Novoselov Vladimir Vladimirovich, Saratov State University
Abstract: 

The calculation of structure, frequencies of normal fluctuations and the strips intensity in IR-spectrums of five dimer of pyridine with hydrogen communication  has been performed by the matrix solation technique B3LYP/6-311+G (d, p). The number’s modeling of the difficult oscillatory contours in the pyridine’s IR-spectrum was executed taking into account the intermolecular interaction. It is shown that the hydrogen communications of the pair self-associatesthe brought the big contribution to formation of strips of the satellites complicating structure of oscillatory strips of monomeric pyridine  in the matrix-isolated low-temperature IR-spectrum. The detailed interpretation of the low-temperature matrix isolated IR-spectrum of H5  D5 pyridine absorption is offered. Thermodynamic characteristics of complexes formation taking into account a basic peak-a-boo mistake are calculated.

Reference: 
  1. Klaboe P., Nielsen C. J. Recent advances in infrared matrix isolation spectroscopy // Analyst (Cambridge, United Kingdom). 1992. Vol. 117, № 3. P. 335–341.
  2. Пиментел Дж. Колебательная спектроскопия / под ред. A. Барнса и У. Орвилл-Томаса. М. : Мир, 1981. 480 с.
  3. Барри Ф. М., Тохадзе К. Г. Водородная связь / под ред. Н. Д. Соколова. М. : Наука, 1981. 286 с.
  4. Bürger H., Schneider W., Sommer S., Thiel W., Willner H. Generation of gold ions in the solid state or in fluorosulfuric acid solution and their identification by ESR // J. Chem. Phys. 1991. Vol. 95, № 8. P. 5660-9.
  5. Shepherd R. A., Graham W. R. M. Formation and Identification of Interstellar Molecule Linear C5H from Photolysis of Methane Dispersed in Solid Neon // J. Chem. Phys. 1987. Vol. 86. P. 2600–2605.
  6. Goodman M. A., Sweany R. L., Flurry R. L. Jr. Iinfrared spectra of matrix-isolated, crystalline solid, and gas phase C3-C6 n-alkanes // J. Phys. Chem. 1983. Vol. 87, № 10. P. 1753–1757.
  7. Engdahl A., Nelander B. Infrared spectrum of cisglyoxal // Chem. Phys. Lett. 1988. Vol. 148, № 2–3. P. 264–275.
  8. Шапетько Н. Н., Базов В. П. Проявление туннельных эффектов в инфракрасных спектрах ацетилацетона в матричной изоляции при 14 К // Журн. физ. химии. 1989. Т. 63, № 10. С. 2832–2835.
  9. Destexhe A., Smets J., Adamowicz L., Maes G. Matrix-Isolation FT-IR Studies and AbInitio Calculations of Hydrogen-Bonded. Complexes of Molecules Modeling Cytosine // J. Phys. Chem. 1994. Vol. 98, № 5. P. 1506-1514.
  10. Szczesniak M., Nowak M. J., Szczepaniak K., Chin S., Scott I., Person W. B. Matrix isolation studies of nucleic acid constituents-III. 1-Methyluracil, 3-methyluracil and 1,3-dimethyluracil monomers // Spectrochim. Acta. A. 1985. Vol. 41, № 1–2. P. 233–236.
  11. Степаньян С. Г., Шеина Г. Г., Радченко Е. Д., Благой Ю. П. Инфракрасные спектры и таутомерия изоцитозина в аргоновой матрице // Журн. физ. химии. 1989. Т. 63, № 11. С. 3008–3014.
  12. Nowak M. J., Lapinski L., Kwiatkowski J. S., Leszczyński J. Molecular Structure and Infrared Spectra of Adenine. Experimental Matrix Isolation and Density Functional Theory Study of Adenine (15)N Isotopomers // J . Phys. Chem. 1996. Vol. 100, № 9. P. 3527–3534.
  13. Stepanian S. G., Reva I. D., Radchenko E. D., Adamowicz L. Conformational Behavior of Alanine. Matrix-Isolation Infrared and Theoretical DFT and ab Initio Study // J. Phys. Chem. A. 1998. Vol. 102, № 24. P. 4623–4629.
  14. Ivanov A. Yu., Sheina G., Blagoi Yu. P. FTIR spectroscopic study of the UV-induced rotamerization of glycine in the low temperature matrices (Kr, Ar, Ne) // Spectrochim. Acta. A. 1999. Vol. 55, № 1. P. 219–228.
  15. Kincaid J. R., Urban M. W., Watanabe T., Nakamoto K. Infrared Spectra of Matrix-Isolated Metal Complexes of Octaethylporphine // J. Phys. Chem. 1983. Vol. 87, № 16. P. 3096–3101.
  16. Radziszewski J. G., Nepraš M., Balaji V., Waluk J., Vogel E., Michl J. Polarized Infrared Spectra of Photooriented Matrix-Isolated Free-Base Porphyn Isotopomers // J. Phys. Chem. 1995. Vol. 99. P. 14254–14260.
  17. Молекулярные взаимодействия / под ред. Г. Ратайчика, У. Орвилла-Томаса : в 2 т. М. : Мир, 1984. Т. 2. 600 с.
  18. Fujimoto N., Toyama A., Takeuchi H. Effect of hydrogen bonding on the UV resonance Raman bands of the adenine ring and its C8-deuterated analog // J. Mol. Struct. 1998. Vol. 447, № 1–2. P. 61–69.
  19. Efremov R. G., Feofanov A. N., Dzhandzhugazyan K. N., Modyanov N. N., Nabiev I. R. Study of ATP binding in the active site of Na+, K+ ATpase as probed by ultraviolet resonance Raman Spectroscopy // FEBS Lett. 1990. Vol. 260, № 2. P. 257–260.
  20. Taddei G., Castellucci E., Verderame F. D. Pair Association in Matrix Isolated Pyridine // J. Chem. Phys. 1970. Vol. 53, № 6. P. 2407–2411.
  21. Moller C., Plesset M. S. Note on an approximation treatment for many – electron system // Phys. Rev. 1934. Vol. 46, № 7. P. 618–622.
  22. Кон В. Электронная структура вещества – волновые функции и функционалы плотности // УФН. 2002. Т. 172, № 3. C. 336–348.
  23. Krishnan R., Schlegel H. B., Pople J. A. Self-consistent orbital methods. XX. A basis set for correlated wave functions // J.Chem. Phys. 1980. Vol. 72, № 1. P. 650–654.
  24. Pople J. A., Head-Gordon M., Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies // J. Chem. Phys. 1987. Vol. 87, № 10.  P. 5968–5975.
  25. Becke A. D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. Vol. 98, № 7. P. 5648–5652.
  26. Lee C., Yang W., Parr R. G. Development of the Colle-Solvetti correlation-energy formula into a functional of the electron density // Phys. Rev. 1988. Vol. 37B, № 2. P. 785–789.
  27. Frisch M. J., Trucks G. W., Schlegel H . B. et al. Gaussian 98 / Gaussian Inc. Pittsburgh, PA, 1998.
  28. Yoshida H., Ehara A., Matsuura H. Density functional vibrational analysis using wavenumber-linear scale factors // Chem. Phys. Lett. 2000. V ol. 325, № 4. P. 477–483.
  29. Portmann S., Fluekiger P.F. URL: http://www.cscs.ch/molekel/
  30. Березин К. В., Березин В. И., Кирносов Н. А., Березин М. К. Учет межмолекулярного взаимодействия в рамках современных квантово-механических методов расчета структуры и колебательных спектров многоатомных молекул // Проблемы оптической физики и биофотоники : материалы 12-й Междунар. Молодежной науч . школы по оптике, лазерной физике и биофотонике. Саратов : Новый ветер, 2009. С. 181–188.
Received: 
10.11.2014
Accepted: 
03.02.2015
Published: 
06.03.2015