Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Prokhorova V. D., Kutikova O. Y., Palaguta A. M., Skripal A. V., Ermishin D. V., Rytik A. P. Study of the influence of electrical impulses on arterial blood microcirculation using laser Doppler flowmetry. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 3, pp. 333-342. DOI: 10.18500/1817-3020-2025-25-3-333-342, EDN: OQWITA

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
29.08.2025
Full text:
(downloads: 135)
Language: 
Russian
Article type: 
Article
UDC: 
530.182:537.86
EDN: 
OQWITA

Study of the influence of electrical impulses on arterial blood microcirculation using laser Doppler flowmetry

Autors: 
Prokhorova Veronika Dmitrievna, Saratov State University
Kutikova Oksana Yu., Saratov State University
Palaguta Alexey Mikhailovich, Saratov State University
Skripal Anatoliy Vladimirovich, Saratov State University
Ermishin Dmitry V., Clover LLC
Rytik Andrey Petrovich, Saratov State University
Abstract: 

Background and Objectives: The influence of low-voltage electrical current impulses on arterial blood microcirculation was investigated using the method of laser Doppler flowmetry. Materials and Methods: The method involves measuring the blood microcirculation index by quantifying the Doppler frequency shift arising when the microcirculatory bed is probed with laser radiation, followed by the registration of radiation reflected from both moving and stationary tissue components. Results: It has been demonstrated that exposure to electrical current impulses leads to an average 4-fold increase in the myogenic component of the spectrum relative to the baseline sample. This increase is associated with changes in the tone of the vascular wall in blood arterioles. The predominance of neurogenic components of the spectrum after cessation of exposure to electrical impulses has also been revealed. Conclusion: Utilizing the laser Doppler flowmetry method based on the amplitudes of spectral harmonics of vascular oscillation rhythms allows to determine quantitatively the changes in blood flow regulation during exposure to current impulses.

Acknowledgments: 
The work was supported by the Russian Science Foundation (project No. 23-14-00287, https://rscf.ru/project/23-14-00287/).
Reference: 
  1. Cardiovascular diseases. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed February 12, 2025) (in Russian).
  2. Glushchenko V. A., Irklienko E. K. Cardiovascular morbidity is one of the most important health problems. Medicine and Health Care Organization, 2019, vol. 4, no. 1, pp. 56–63 (in Russian). EDN: KNGYDV
  3. Kosolapov V. P., Yarmonova M. V. Analysis of high cardiovascular morbidity and mortality in the adult population as a medical and social problem and the search for ways to solve it. Ural Medical Journal, 2021, vol. 20, no. 1, pp. 58–64 (in Russian). https://doi.org/10.52420/2071-5943-2021-20-1-58-64
  4. Currie J., Ramsbottom R., Ludlow H., Nevill A., Gilder M. Cardio-respiratory fitness, habitual physical activity and serum brain derived neurotrophic factor (BDNF) in men and women. Neurosci., 2009, vol. 451, iss. 2, pp. 152–155. https://doi.org/10.1016/j.neulet.2008.12.043
  5. Dobsák P., Nováková M., Siegelová J., Fiser B., Vítovec J., N. Nagasaka, Kohzuki M., Yambe T., Nitta Shin-ichi, Eicher J.-Ch., Wolf J.-E., Imachi K. Low-frequency electrical stimulation increases muscle strength and improves blood supply in patients with chronic heart failure. Circ. J., 2006, vol. 70, iss. 1, pp. 75–82. https://doi.org/10.1253/circj/70.75
  6. Hamada T., Hayashi T., Kimura T., Nakao K., Moritani T. Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J. Appl. Physiol., 2004, vol. 96, iss. 3, pp. 911–916. https://doi.org/10.1152/japplphysiol.00664.2003
  7. Hamada T., Sasaki H., Hayashi T., Moritani T., Nakao K. Enhancement of whole body glucose uptake during and after human skeletal muscle low-frequency electrical stimulation. J. Appl. Physiol., 2003, vol. 94, iss. 6, pp. 2107–2112. https://doi.org/10.1152/japplphysiol.00486.2002
  8. Hasegawa S., Kobayashi M., Arai R., Tamaki A., Nakamura T., Moritani T. Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction. J. Electromyogr. Kinesiol., 2011, vol. 21, iss. 4, pp. 622–630. https://doi.org/10.1016/j.jelekin.2011.01.005
  9. Megumi Hoshiai, Kaori Ochiai, Yuma Tamura. Effects of whole body neuromuscular electrical stimulation device on hemodynamics, arrhythmia, and sublingual microcirculation. Heart and Vessels, 2021, vol. 36, pp. 844–852. https://doi.org/10.1007/s00380-020-01755-1
  10. Ando S., Takagi Y., Watanabe H., Mochizuki K., Sudo M., Fujibayashi M., Tsurugano Sh., Kohei Sato K. Effects of electrical muscle stimulation on cerebral blood flow. BMC Neurosci., 2021, vol. 22, art. 67. https://doi.org/10.1186/s12868-021-00670-z
  11. Hardy E. J., Hatt J., Doleman B., Smart T. F., Piasecki M., Lund J. N., Phillips B. E. Post-operative electrical muscle stimulation attenuates loss of muscle mass and function following major abdominal surgery in older adults: a split body randomised control trial. Age and Ageing, 2022, vol. 51, iss. 10, art. afac234. https://doi.org/10.1093/ageing/afac234
  12. Mukherjee S., Fok J. R., van Mechelen W. Electrical Stimulation and Muscle Strength Gains in Healthy Adults: A Systematic Review. Journal of Strength and Conditioning Research, 2023, vol. 37, no. 4, pp. 938–950. https://doi.org/10.1519/JSC.0000000000004359
  13. Filipovic A., Kleinöder H., Dörmann U., Mester J. Electromyostimulation–A Systematic Review of the Influence of Training Regimens and Stimulation Parameters on Effectiveness in Electromyostimulation Training of Selected Strength Parameters. Journal of Strength and Conditioning Research, 2011, vol. 25, no. 11, pp. 3218–3238. https://doi.org/10.1519/JSC.0b013e318212e3ce
  14. Wang J.-S., Chen S.-Y., Lan C., Wong M.-K., Lai J.-S. Neuromuscular electric stimulation enhances endothelial vascular control and hemodynamic function in paretic upper extremities of patients with stroke. Archives of Physical Medicine and Rehabilitation, 2004, vol. 85, iss. 7, pp. 1112–1116. https://doi.org/10.1016/j.apmr.2003.11.027
  15. Corley G. J., Breen P. P., Bîrlea S. I, Serrador J. M., Grace P. A., Ólaighin G. Hemodynamic effects of habituation to a week-long program of neuromuscular electrical stimulation. Med. Eng. Phys., 2012, vol. 34, iss. 4, pp. 459–465. https://doi.org/10.1016/j.medengphy.2011.08.005
  16. Luck J. C., Kunselman R., Cheryl A. D., Blaha Ch. A., 1, Sinoway L. I., Cui J. Multiple laser Doppler flowmetry probes increase the reproducibility of skin blood flow measurements. Frontiers in Physiology. Section: Integrative Physiology, 2022, vol. 13, art. 876633. https://doi.org/10.3389/fphys.2022.876633
  17. Fredriksson I., Fors C., Johansson J. Laser Doppler Flowmetry – A Theoretical Framework. Linköping, Linköping University, 2012. 22 p. Available at: https://www.researchgate.net/publication/238678169_Laser_Doppler_Flowmetry_-_A_Theoretical_Framework (accesed July 06, 2025).
  18. Krupatkin A. I., Sidorov V. V. Funktsional’naya diagnostika sostoyaniya mikrotsirkulyatorno-tkanevykh sistem: kolebaniya, informatsiya, nelineynost’. Rukovodstvo dlya vrachey [Functional diagnostics of the state of microcirculatory-tissue systems: Oscillations, information, nonlinearity. Manual for doctors]. Moscow, Knizhnyy dom “LIBROKOM”, 2022. 496 p. (in Russian).
  19. Stefanovska A., Bračič M., Kvernmo H. D. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Transactions on Biomedical Engineering, 1999, vol. 46, no. 10, pp. 1230–1239. https://doi.org/10.1109/10.790500
  20. Kulikov D. A., Glazkov A. A., Kovaleva Yu. A., Balashova N. V., Kulikov A. V. Prospects of laser Doppler flowmetry application in assessment of skin microcirculation in diabetes. Diabetes Mellitus, 2017, vol. 20, no. 4, pp. 279–285. https://doi.org/10.14341/DM8014
  21. Skripal An.V., Al-Badri Farkad, Mashkov K. V., Usanov AD, Averyanov A. P. Laser flowmetry of finger blood microcirculation depending on external temperature and limb position. Regional Blood Circulation and Microcirculation, 2023, vol. 22, no. 4, pp. 35–41 (in Russian). https://doi.org/10.24884/1682-6655-2023-22-4-35-41
  22. Sidorov V. V., Rybakov Yu. L., Gukasov V. M., Yevtushenko G. S. A device for comprehensive noninvasive diagnostics of the tissue microcirculation system of human skin. Biomedical Engineering, 2021, vol. 55, no. 4, pp. 232–235. https://doi.org/10.1007/s10527-021-10108-9
  23. Kozlov V. I., Azizov G. A., Gurova O. A., Litvin F. B. Laser Doppler flowmetry in assessing the state and disorders of blood microcirculation. Moscow, RUDN Iniversity Publ., 2012, 32 p. Available at: http://angiologia.ru/specialist/cathedra/recommendations/2012/001.pdf (accessed July 7, 2025) (in Russian).
  24. Method of electrical stimulation of the ureter. RF Patent No. 2731802. IPC A61N 1/32 C1 (РФ). МПК А614N 1/32 (2006/01). Declared November 15, 2019, published Septemver 08, 2020. Rytik A. P., Verbitskii S. M., Kutikova O. Yu. Available at: https://yandex.ru/patents/doc/RU2731802C1_20200908 (accessed July 7, 2025).
  25. Goremykin V. I., Prosova E. E., Usanov D. A., Rytik A. P., Grigorieva M. M. Device for the correction of urodynamics disorders of the upper urinary tract in children with chronic pyelonephritis. Biomedical Engineering, 2014, vol. 48, no. 4, pp. 169–172. https://doi.org/10.1007/s10527-014-9445-y
Received: 
16.04.2025
Accepted: 
10.07.2025
Published: 
29.08.2025