Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Yakovlev D. D. Structural Features of Statistically Rotationally Invariant Mosaic Birefringent Layers That Show Circular Dichroism. Izvestiya of Sarat. Univ. Physics. , 2019, vol. 19, iss. 3, pp. 188-200. DOI: 10.18500/1817-3020-2019-19-3-188-200

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 64)
Language: 
Russian
UDC: 
535.361:53.06:617.73:76.03.29

Structural Features of Statistically Rotationally Invariant Mosaic Birefringent Layers That Show Circular Dichroism

Autors: 
Yakovlev Dmitry Dmitrievich, Saratov State University
Abstract: 

Background and Objectives: Nonabsorbing cholesteric liquid crystalline layers with a fine-domain random planar structure and with the cholesteric pitch being much larger than the wavelength of the incident light have been recently demonstrated to exhibit electricallyinduced circular dichroism due to scattering. Experimental conditions under which this effect was observed allow consideration of a problem of scattering of light on such a liquid-crystalline layer as a problem of diffraction of a light beam on a mosaic of chiral domains with different azimuthal orientation. The main goal of this paper is to find out what structural features mosaic birefringent layers must have in order to show the circular dichroism. Materials and Methods: The theoretical approach is based on the two-point generalized Mueller matrix method and uses the phase screen approximation. As an illustration, experimental data on the circular dichroism of fine-domain layers of long-pitch cholesteric liquid crystals are presented. Results: It is shown that, in the absence of polarization-dependent reflection and absorption, a mosaic layer composed of birefringent domains with different azimuthal orientation can show the circular dichroism only when the following conditions are satisfied: (i) the domains are chiral, (ii) the layer, considered as a system of domains, is not enantiomorphous, (iii) the common absolute phase shift varies across the layer area. Structural conditions under which the nonscattered component is completely circularly polarized when the incident beam is linearly polarized or unpolarized are found. Conclusion: We have determined sufficient structural conditions for observation of the circular dichroism on mosaic birefringent layers.

Reference: 

1. Arteaga O., Kahr B. Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition. Opt. Lett., 2013, vol. 38, no. 7, pp. 1134–1136. DOI: https://doi.org/10.1364/OL.38.001134

2. Arteaga O., Freudenthal J., Wang B., Kahr B. Mueller matrix polarimetry with four photoelastic modulators: theory and calibration. Appl. Opt., 2012, vol. 51, no. 28, pp. 6805–6817. DOI: https://doi.org/10.1364/AO.51.006805

3. Arteaga O., Canillas A. Measurement of the optical activity of anisotropic samples by transmission Mueller matrix Ellipsometry. EPJ Web Conf., 2010, vol. 5, pp. 03001-p.1–03001-p.5. DOI: https://doi.org/10.1051/epjconf/20100503001

4. Arteaga O. Natural optical activity vs circular Bragg refl ection studied by mueller matrix ellipsometry. Thin Solid Films, 2016, vol. 617, pp. 14–19. DOI: https://doi.org/10.1016/j.tsf.2016.01.012

5. Eguchi N., Goto H. Lyotropic liquid crystal electrochemical polymerization of thiophene-based monomers: polymerization in cholesteric liquid crystal and columnar phase. Soft, 2017, vol. 5, no. 2, pp. 9–19. DOI: https://doi.org/10.4236/soft.2017.52002

6. Dong J., Kawabata K., Goto H. Synthesis and characterization of a novel donor-acceptor-donor chiral inducer and application in electrochemical polymerization. J. Mater. Chem. C, 2015, vol. 3, no. 9, pp. 2024–2032. DOI: https://doi.org/10.1039/C4TC02489C

7. Vollick B., Kuo P.-Y., Alizadehgiashi M., Yan N., Kumacheva E. From structure to properties of composite fi lms derived from cellulose manocrystals. ACS Omega, 2017, vol. 2, no. 9, pp. 5928−5934. DOI: https://doi.org/10.1021/acsomega.7b01119

8. Cheng Z., Ye H., Cheng F., Li H., Ma Y., Zhang Q., Natan A., Mukhopadhyay A., Jiao Y., Li Y., Liu Y., Zhu H. Tuning chiral nematic pitch of bioresourced photonic fi lms via coupling organic acid hydrolysis. Adv. Mater. Interfaces, 2019, vol. 6, no. 7, pp. 1802010-1−1802010-12. DOI: https://doi.org/10.1002/admi.201802010

9. Mendoza-Galván A., Muñoz-Pineda E., Ribeiro S. J. L., Santos M. V., Järrendahl K., Arwin H. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose fi lms. J. Opt., 2018, vol. 20, no. 2, pp. 024001-1–024001-10. DOI: https://doi.org/10.1088/2040-8986/aa9e7d

10. Heinzmann U., Bustamante C., Kim K.-J., Gea-Banacloche J., Scully H., Snyder P. A., Schatz P. N., Rowe E. M., Newman C. D., May J. H., Allen F. S., Bickel W. S., Hall K., Wells K. S., Samori B., Maestre M. F., Tinoco I., Jr., Nicolini C., Salzman G. C., Grace W. K., McGregor D. M., Gregg C. T., Johnson W. С., Jr., Keller D., Moore D. S., Polavarapu P. L., Stevens E. S. Applications of circularly polarized radiation using synchrotron and ordinary sources. New York, Springer, 1985. 193 p.

11. Coursault D., Zappone B., Coati A., Boulaoued A., Pelliser L., Limagne D., Boudet N., Ibrahim B. H., de Martino A., Alba M., Goldmann M., Garreau Y., Gallas B., Lacaze E. Self-organized arrays of dislocations in thin smectic liquid crystal fi lms. Soft Matter, 2016, vol. 12, no. 3, pp. 678–688. DOI: https://doi.org/10.1039/C5SM02241J

12. Sinichkin Yu. P., Spivak A. V., Yakovlev D. A. Simple parametric representations of the polarization optical properties of birefringent biological tissues in refl ection polarization spectroscopy. Opt. Spectrosc., 2009, vol. 107, no. 6, pp. 873–883. DOI: https://doi.org/10.1134/S0030400X09120078

13. Sinichkin Yu. P., Spivak A. V., Yakovlev D. A. Effect of scattering anisotropy and material optical anisotropy of oriented fi ber layers on the transmitted light polarization. Opt. Spectrosc., 2010, vol. 109, no. 2, pp. 169–177. DOI: https://doi.org/10.1134/S0030400X10080047

14. Backman V., Gurjar R., Badizadegan K., Itzkan I., Dasari R. R., Perelman L. T., Feld M. S. Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Top. Quant. Electron., 1999, vol. 5, no. 4, pp. 1019–1026. DOI: https://doi.org/10.1109/2944.796325

15. Tuchin V. V., Wang L. V., Zimnyakov D. A. Optical polarization in biomedical applications. Berlin, Heidelberg, Springer-Verlag, 2006. 281 p.

16. Yakovlev D. D., Sherman M. M., Yakovlev D. A. Electrically induced circular dichroism of multidomain layers of a long-pitch cholesteric liquid crystal. Proc. SPIE, 2014, vol. 9031, pp. 90311B-1–90311B-6. DOI: https://doi.org/10.1117/12.2052702

17. Sherman M. M., Yakovlev D. A. Features of Light Transmission through Monolayer of Structurally Identical Anisotropic Domains with Random Azimuthal Orientation. Opt. Spectrosc., 2010, vol. 109, no. 2, pp. 206–215. DOI: https://doi.org/10.1134/S0030400X10080059

18. Yakovlev D. D., Yakovlev D. A. Scattering patterns of orthogonally polarized light components for statistically rotationally invariant mosaic birefringent layers. Opt. Spectrosc., 2019, vol. 126, no. 3, pp. 245–256.

19. Korotkova O., Wolf E. Effects of linear non-image forming devices on spectra and on coherence and polarization properties of stochastic electromagnetic beams: part I: general theory. J. Mod. Opt., 2005, vol. 52, no. 18, pp. 2659–2671. DOI: https://doi.org/10.1080/09500340500334038

20. Shirai T., Wolf E. Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes on propagation in free space. J. Opt. Soc. Am. A, 2004, vol. 21, no. 10, pp. 1907–1916. DOI: https://doi.org/10.1364/JOSAA.21.001907

21. Ostrovsky A. S., Hernández García E. Modulation of spatial coherence of optical fi eld by means of liquid crystal light modulator. Rev. Mex. Fıs., 2005, vol. 51, no. 5, pp. 442–446.

22. Savenkov S. N., Grygoruk V. I., Muttiah R. S., Yushtin K. E., Oberemok Y., Yakubchak V. V. Effective dichroism in forward scattering by inhomogeneous birefringent medium. J. Quant. Spectrosc. Radiat. Transfer, 2009, vol. 110, no. 1–2, pp. 30–42. DOI: https://doi.org/10.1016/j.jqsrt.2008.09.002

23. Luis A. Spatial-angular Mueller matrices. Opt. Commun., 2006, vol. 263, no. 2, pp. 141–146. DOI: https://doi.org/10.1016/j.optcom.2006.01.04

24. Tervo J., Turunen J. Paraxial-domain diffractive elements with 100% effi ciency based on polarization gratings. Opt. Lett. 2000, vol. 25, no. 11, pp. 785–786. DOI: https://doi.org/10.1364/OL.25.000785

25. Nikolova L., Ramanujam P. S. Polarization Holography. Cambridge, Cambridge University Press, 2009. 248 p.

26. Mi X.-D., Yang D.-K. Capillary filling of nematic liquid crystals. Phys. Rev. E, 1998, vol. 58, no. 2, pp. 1992–2000. DOI: https://doi.org/10.1063/1.333796

27. Yokoyama H., Kobayashi S., Kamei H. Role of surface adsorption in the surface-induced alignment of nematic liquid crystals on evaporated SiO films. J. Appl. Phys., 1984, vol. 56, no. 10, pp. 2645–2654. DOI: https://doi.org/10.1063/1.333796

28. Yakovlev D. D. Characterization of and correcting for imperfections of compound zero-order waveplates for spectral polarization measurements. Proc. of SPIE, 2014, vol. 9031, pp. 90311C-1–90311C-5. DOI: https://doi.org/10.1117/12.2052702

29. Yakovlev D. A., Chigrinov V. G., Kwok H.-S. Modeling and optimization of LCD optical performance. Chichester, J. Wiley & Sons. 2015. 554 p.

30. Desimpel C., Neyts K., Olivero D., Oldano C., de Boer D. K. G., Cortie R. Optical transmission model for thin two-dimensional layers. Mol. Cryst. Liq. Cryst., 2004, vol. 422, no. 1, pp. 185/[455]–195/[465]. DOI: https://doi.org/10.1080/15421400490502526

31. Korotkova O., Wolf E. Generalized Stokes parameters of random electromagnetic beams. Opt. Lett., 2005, vol. 30, no. 2, pp. 198–200. DOI: https://doi.org/10.1364/OL.30.000198

32. Korotkova O. Conservation laws for stochastic electromagnetic free fi elds. J. Opt. A: Pure Appl. Opt., 2008, vol. 10, no. 2, pp. 025003-1– 025003-5. DOI: https://doi.org/10.1088/1464-4258/10/2/025003

33. Korotkova O., Hoover B. G., Gamiz V. L., Wolf E. Coherence and polarization properties of far fi elds generated by quasi-homogeneous planar electromagnetic sources. J. Opt. Soc. Am. A, 2005, vol. 22, no. 11, pp. 2547–2556. DOI: https://doi.org/10.1364/JOSAA.22.002547

34. Yang D. K., Doane J. W., Yaniv Z., Glasser J. Cholesteric refl ective display: drive scheme and contrast. Appl. Phys. Lett., 1994, vol. 64, no. 15, pp. 1905–1907. DOI: https://doi.org/10.1063/1.111738

35. Kim K.-H., Jin H.-J., Park K.-H., Lee J.-H., Kim J. C., Yoon T.-H. Long-pitch cholesteric liquid crystal cell for switchable achromatic refl ection. Opt. Express, 2010, vol. 18, no. 16, pp. 16745–16750. DOI: https://doi.org/10.1364/OE.18.016745

36. Yabe Y., Seo D.-Sh. Hysteresis behaviour of the nematic- cholesteric phase transition for liquid crystals on polyimide fi lms without use of the rubbing technique. Liq. Cryst., 1994, vol. 17, no. 6, pp. 847–854. DOI: https://doi.org/10.1080/02678299408035477