Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Svenskaya Y. I., Genina E. A., Tuchin V. V. Sonophoretic acceleration of degradation process for vaterite particles delivered into the hair follicles. Izvestiya of Sarat. Univ. Physics. , 2021, vol. 21, iss. 1, pp. 80-85. DOI: 10.18500/1817-3020-2021-21-1-80-85

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 37)
Article type: 
Short communication

Sonophoretic acceleration of degradation process for vaterite particles delivered into the hair follicles

Svenskaya Yulia Igorevna, Saratov State University
Genina Elina Alekseevna, Saratov State University
Tuchin Valeriy Viktorovich, Saratov State University

Intrafollicular drug delivery is beneficial in terms of both localized therapy of relevant skin disorders and systemic transportation of bioactive molecules. Vaterite particles are capable of loading and delivering various substances to hair follicles. Possibility to control the duration of their intrafollicular degradation can improve such a particulate delivery system. Here, we propose the use of sonophoresis (1 MHz, 1 W/cm2) to accelerate the resorption of vaterite carriers inside the hair follicles of rats in vivo. The effect of sonication is demonstrated utilizing optical coherence tomography monitoring of the skin and scanning electron microscopy investigation of the plucked hairs. A nine-minute post-treatment of skin in the site of particle delivery allowed us to almost halve the time of their degradation.

The authors are grateful to Vsevolod S. Atkin for SEM measurements and Dr. Alla B. Bucharskaya for the help with in vivo experiments.
  1. Knorr F., Lademann J., Patzelt A., Sterry W. U. BlumePeytavi, Vogt A. Follicular transport route ‒ Research progress and future perspectives. European Journal of Pharmaceutics and Biopharmaceutics, 2009, vol. 71, iss. 2, pp. 173–180.
  2. Blume-Peytavi U., Vogt A. Human hair follicle: Reservoir function and selective targeting. British Journal of Dermatology, 2011, vol. 165, pp. 13–17.
  3. Roberts M. S., Cross S. E, Pellett M. A. Skin transport. Drugs and the Pharmaceutical Sciences, 2002, vol. 119, pp. 89‒196.
  4. Wosicka H. , Cal K. Targeting to the hair follicles: Current status and potential. Journal of Dermatological Science, 2010, vol. 57, iss. 2, pp. 83–89.
  5. Lademann J., Knorr F., Richter H., Jung S., Meinke M. C., Rühl E., Alexiev U., Calderon M., Patzelt A. Hair follicles as a target structure for nanoparticles. Journal of Innovative Optical Health Sciences, 2015, vol. 8, no. 4, pp. 1530004.
  6. Svenskaya Y. I., Genina E. A., Parakhonskiy B. V., Lengert E. V., Talnikova E. E., Terentyuk G. S., Utz S. R., Gorin D. A., Tuchin V. V., Sukhorukov G. B. A Simple Non-Invasive Approach toward Efficient Transdermal Drug Delivery Based on Biodegradable Particulate System. ACS Applied Materials & Interfaces, 2019, vol. 11, iss. 19, pp. 17270–17282.
  7. Svenskaya Y. I., Talnikova E. E., Parakhonskiy B. V., Tuchin V. V., Sukhorukov G. B., Gorin D. A., Utz S. R. Enhanced topical psoralen–ultraviolet A therapy via targeting to hair follicles. British Journal of Dermatology, 2020, vol. 182, iss. 6, pp. 1479–1481.
  8. Gusliakova O., Verkhovskii R., Abalymov A., Lengert E., Kozlova A., Atkin V., Nechaeva O., Morrison A., Tuchin V., Svenskaya Yu. Transdermal platform for the delivery of the antifungal drug naftifine hydrochloride based on porous vaterite particles. Materials Science and Engineering: C, 2021, vol. 119, p. 111428.
  9. Lengert E., Verkhovskii R., Yurasov N., Genina E., Svenskaya Yu. Mesoporous carriers for transdermal delivery of antifungal drug. Materials Letter, 2019, vol. 248, pp. 211–213.
  10. Svenskaya Y. I., Navolokin N. A., Bucharskaya A. B., Terentyuk G. S., Kuz’mina A. O., Burashnikova M. M., Maslyakova G. N., Lukyanets E. A., Gorin D. A. Calcium carbonate microparticles containing a photosensitizer photosens: Preparation, ultrasound stimulated dye release, and in vivo application. Nanotechnologies in Russia, 2014, vol. 9, iss. 7–8, pp. 398–409.
  11. Polat B. E., Hart D., Langer R., Blankschtein D. Ultrasound-mediated transdermal drug delivery: Mechanisms, scope, and emerging trends. Journal of Controlled Release, 2011, vol. 152, iss. 3, pp. 330–348.
  12. Levy D., Kost J., Meshulam Y., Langer R. Effect of ultrasound on transdermal drug delivery to rats and guinea pigs. The Journal of Clinical Investigation, 1989, vol. 83, iss. 6, pp. 2074–2078.
  13. Parakhonskiy B. V., Haase A., Antolini R. Sub-Micrometer Vaterite Containers: Synthesis, Substance Loading, and Release. Angewandte Chemie, 2012, vol. 51, iss. 5, pp. 1195–1197.
  14. Genina E. A., Svenskaya Yu. I., Yanina I. Yu., Dolotov L. E., Navolokin N. A., Bashkatov A. N., Terentyuk G. S., Bucharskaya A. B., Maslyakova G. N., Gorin D. A., Tuchin V. V., Sukhorukov G. B. In vivo optical monitoring of transcutaneous delivery of calcium carbonate microcontainers. Biomedical Optics Express, 2016, vol. 7, iss. 6, pp. 2082‒2087.
  15. Rittirod T. Species difference in simultaneous transport and metabolism of ethyl nicotinate in skin. International Journal of Pharmaceutics, 1999, vol. 178, iss. 2, pp. 161–169.
  16. Kao J., Patterson F. K., Hall J. Skin penetration and metabolism of topically applied chemicals in six mammalian species, including man: An in vitro study with benzo [a] pyrene and testosterone. Toxicology and Applied Pharmacology, 1985, vol. 81, iss. 3, pp. 502‒516.
  17. Weber M. J. Handbook of Optical Materials. Boca Raton, CRC Press, 2002. 536 p.